IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v181y2022icp833-842.html
   My bibliography  Save this article

Techno-economic selection and initial evaluation of supercritical CO2 cycles for particle technology-based concentrating solar power plants

Author

Listed:
  • Heller, Lukas
  • Glos, Stefan
  • Buck, Reiner

Abstract

In this study, the techno-economic performance of supercritical carbon dioxide (sCO2) power cycles in concentrating solar power plants based on particle technology is assessed. A simplified levelized cost of electricity calculation was used to investigate the effect of cycle parameters, compare cycle layouts and allow for comparing optimized sCO2 power blocks with steam technology. Results showed that simple cycle layouts with fewer components and lower cycle parameters lead to the lowest energy cost. This is caused by (a) fewer components, (b) lower primary heat exchanger, turbine as well as recuperator cost if the turbine inlet temperatures is limited and (c) a lower cost of the thermal storage system if the sCO2 temperature increase in the primary heat exchanger is large. Nevertheless, even the most economical sCO2 variants generate electricity at a 10 % higher cost than a steam reference system and a significantly lower efficiency. These results held true when changes were made to cost models. Finally, it was shown that the cost of main sCO2 equipment would have to be reduced by 30 %–50 % to reach cost parity with steam systems. These findings will need to be confirmed with more detailed off-design simulations and optimized solar field components.

Suggested Citation

  • Heller, Lukas & Glos, Stefan & Buck, Reiner, 2022. "Techno-economic selection and initial evaluation of supercritical CO2 cycles for particle technology-based concentrating solar power plants," Renewable Energy, Elsevier, vol. 181(C), pages 833-842.
  • Handle: RePEc:eee:renene:v:181:y:2022:i:c:p:833-842
    DOI: 10.1016/j.renene.2021.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121013057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Liu, Yunxia & Zhao, Yuanyang & Yang, Qichao & Liu, Guangbin & Li, Liansheng, 2024. "Research on compression process and compressors in supercritical carbon dioxide power cycle systems: A review," Energy, Elsevier, vol. 297(C).
    3. Guccione, Salvatore & Guedez, Rafael, 2023. "Techno-economic optimization of molten salt based CSP plants through integration of supercritical CO2 cycles and hybridization with PV and electric heaters," Energy, Elsevier, vol. 283(C).
    4. Zhang, Yifan & Li, Hongzhi & Li, Kailun & Yang, Yu & Zhou, Yujia & Zhang, Xuwei & Xu, Ruina & Zhuge, Weilin & Lei, Xianliang & Dan, Guangju, 2022. "Dynamic characteristics and control strategies of the supercritical CO2 Brayton cycle tailored for the new generation concentrating solar power," Applied Energy, Elsevier, vol. 328(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:833-842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.