IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v328y2022ics0306261922013873.html
   My bibliography  Save this article

A quantitative reliability assessment and risk quantification method for microgrids considering supply and demand uncertainties

Author

Listed:
  • Luo, Jianing
  • Li, Hangxin
  • Wang, Shengwei

Abstract

Microgrids have received great interest in achieving high renewable energy penetration. However, intermittent renewable generation may cause reliability problem (i.e., power inadequacy), especially for islanded microgrids. A comprehensive quantitative reliability assessment of microgrids considering uncertainties is essential. Current uncertainty-based reliability assessment approaches usually consider the uncertainties on the supply side only or additionally consider the uncertainties on the demand side using a general distribution without considering the uncertainty characteristics of different demands. This may lead to unreliable assessment results. Besides, existing reliability performance indexes cannot measure the probability/risk of power inadequacy under uncertainties. In this study, a novel uncertainty-based reliability assessment approach is therefore developed for microgrids considering uncertainties at both supply and demand sides. A new reliability index is proposed and a risk quantification method is developed to measure the risk/probability of power inadequacy under uncertainties. The uncertainties at both supply and demand sides are detailedly quantified using a bottom-up approach. The proposed reliability assessment and risk quantification method are tested on an islanded hotel microgrid in Hong Kong. The results show that the proposed reliability assessment approach can provide more robust reliability assessment results while the conventional approach has a probability of 8% to underestimate the maximum outage power. The proposed risk quantification method can help to provide more comprehensive reliability assessment results under uncertainties. The risk quantification results indicate that the highest monthly power inadequacy risk of the hotel microgrid appears in August (i.e., 5.8%), while the highest hourly risk appears at 9:00 p.m. (i.e., 4.8%).

Suggested Citation

  • Luo, Jianing & Li, Hangxin & Wang, Shengwei, 2022. "A quantitative reliability assessment and risk quantification method for microgrids considering supply and demand uncertainties," Applied Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:appene:v:328:y:2022:i:c:s0306261922013873
    DOI: 10.1016/j.apenergy.2022.120130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922013873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gang, Wenjie & Augenbroe, Godfried & Wang, Shengwei & Fan, Cheng & Xiao, Fu, 2016. "An uncertainty-based design optimization method for district cooling systems," Energy, Elsevier, vol. 102(C), pages 516-527.
    2. Catrinu, M.D. & Nordgård, D.E., 2011. "Integrating risk analysis and multi-criteria decision support under uncertainty in electricity distribution system asset management," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 663-670.
    3. Li, Hangxin & Wang, Shengwei & Tang, Rui, 2019. "Robust optimal design of zero/low energy buildings considering uncertainties and the impacts of objective functions," Applied Energy, Elsevier, vol. 254(C).
    4. Zhang, Yan & Fu, Lijun & Zhu, Wanlu & Bao, Xianqiang & Liu, Cang, 2018. "Robust model predictive control for optimal energy management of island microgrids with uncertainties," Energy, Elsevier, vol. 164(C), pages 1229-1241.
    5. Gang, Wenjie & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2015. "Robust optimal design of building cooling systems considering cooling load uncertainty and equipment reliability," Applied Energy, Elsevier, vol. 159(C), pages 265-275.
    6. Mohanta, Dusmanta Kumar & Sadhu, Pradip Kumar & Chakrabarti, R., 2007. "Deterministic and stochastic approach for safety and reliability optimization of captive power plant maintenance scheduling using GA/SA-based hybrid techniques: A comparison of results," Reliability Engineering and System Safety, Elsevier, vol. 92(2), pages 187-199.
    7. Amir, Vahid & Azimian, Mahdi, 2020. "Dynamic Multi-Carrier Microgrid Deployment Under Uncertainty," Applied Energy, Elsevier, vol. 260(C).
    8. Gang, Wenjie & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2016. "District cooling systems: Technology integration, system optimization, challenges and opportunities for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 253-264.
    9. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico, 2014. "An integrated framework of agent-based modelling and robust optimization for microgrid energy management," Applied Energy, Elsevier, vol. 129(C), pages 70-88.
    10. Sharafi, Masoud & ElMekkawy, Tarek Y., 2015. "Stochastic optimization of hybrid renewable energy systems using sampling average method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1668-1679.
    11. Boroomandnia, Arezoo & Rismanchi, Behzad & Wu, Wenyan, 2022. "A review of micro hydro systems in urban areas: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    12. Lu, Lin & Yang, Hongxing & Burnett, John, 2002. "Investigation on wind power potential on Hong Kong islands—an analysis of wind power and wind turbine characteristics," Renewable Energy, Elsevier, vol. 27(1), pages 1-12.
    13. Baghaee, H.R. & Mirsalim, M. & Gharehpetian, G.B. & Talebi, H.A., 2016. "Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system," Energy, Elsevier, vol. 115(P1), pages 1022-1041.
    14. Daud, Abdel-Karim & Ismail, Mahmoud S., 2012. "Design of isolated hybrid systems minimizing costs and pollutant emissions," Renewable Energy, Elsevier, vol. 44(C), pages 215-224.
    15. Fong, K.F. & Lee, C.K., 2015. "Performance analysis of internal-combustion-engine primed trigeneration systems for use in high-rise office buildings in Hong Kong," Applied Energy, Elsevier, vol. 160(C), pages 793-801.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongheng Luo & Zhonglong Li & Sen Li & Fei Jiang, 2023. "Risk Assessment for Energy Stations Based on Real-Time Equipment Failure Rates and Security Boundaries," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    2. Wang, Bangyan & Wang, Xifan & Wang, Zhiwei & Wei, Chengxiao & Zhang, Xiao-Ping & Zhou, Mo & Gao, Jiawen & Han, Zhentao, 2024. "A four-stage fast reliability assessment framework for renewables-dominated strong power systems with large-scale energy storage by temporal decoupling and contingencies filtering," Applied Energy, Elsevier, vol. 362(C).
    3. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2023. "A framework for quantifying the value of information to mitigate risk in the optimal design of distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 350(C).
    4. Luo, Jianing & Yuan, Yanping & Joybari, Mahmood Mastani & Cao, Xiaoling, 2024. "Development of a prediction-based scheduling control strategy with V2B mode for PV-building-EV integrated systems," Renewable Energy, Elsevier, vol. 224(C).
    5. Yan Ma & Yumin Chen & Zhengwei Chang & Qian Li & Hongli Liu & Yang Wei, 2023. "Power Side Risk Assessment of Multi-Energy Microgrids Considering Risk Propagation between Interconnected Energy Networks," Energies, MDPI, vol. 16(22), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hangxin & Wang, Shengwei, 2020. "Coordinated robust optimal design of building envelope and energy systems for zero/low energy buildings considering uncertainties," Applied Energy, Elsevier, vol. 265(C).
    2. He, Yi & Guo, Su & Zhou, Jianxu & Wu, Feng & Huang, Jing & Pei, Huanjin, 2021. "The many-objective optimal design of renewable energy cogeneration system," Energy, Elsevier, vol. 234(C).
    3. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    4. Kang, Jing & Wang, Shengwei & Yan, Chengchu, 2019. "A new distributed energy system configuration for cooling dominated districts and the performance assessment based on real site measurements," Renewable Energy, Elsevier, vol. 131(C), pages 390-403.
    5. Li, Hangxin & Wang, Shengwei, 2017. "Probabilistic optimal design concerning uncertainties and on-site adaptive commissioning of air-conditioning water pump systems in buildings," Applied Energy, Elsevier, vol. 202(C), pages 53-65.
    6. Zhuang, Chaoqun & Wang, Shengwei & Shan, Kui, 2019. "Probabilistic optimal design of cleanroom air-conditioning systems facilitating optimal ventilation control under uncertainties," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Luis Gabriel Marín & Mark Sumner & Diego Muñoz-Carpintero & Daniel Köbrich & Seksak Pholboon & Doris Sáez & Alfredo Núñez, 2019. "Hierarchical Energy Management System for Microgrid Operation Based on Robust Model Predictive Control," Energies, MDPI, vol. 12(23), pages 1-19, November.
    8. Li, Hangxin & Wang, Shengwei, 2022. "Two-time-scale coordinated optimal control of building energy systems for demand response considering forecast uncertainties," Energy, Elsevier, vol. 253(C).
    9. Li, Hangxin & Wang, Shengwei, 2022. "Comparative assessment of alternative MPC strategies using real meteorological data and their enhancement for optimal utilization of flexibility-resources in buildings," Energy, Elsevier, vol. 244(PA).
    10. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    11. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    12. Niu, Jide & Tian, Zhe & Yue, Lu, 2020. "Robust optimal design of building cooling sources considering the uncertainty and cross-correlation of demand and source," Applied Energy, Elsevier, vol. 265(C).
    13. Zabala, Laura & Febres, Jesus & Sterling, Raymond & López, Susana & Keane, Marcus, 2020. "Virtual testbed for model predictive control development in district cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    14. Deng, Na & He, Guansong & Gao, Yuan & Yang, Bin & Zhao, Jun & He, Shunming & Tian, Xue, 2017. "Comparative analysis of optimal operation strategies for district heating and cooling system based on design and actual load," Applied Energy, Elsevier, vol. 205(C), pages 577-588.
    15. Li, Hangxin & Wang, Shengwei & Tang, Rui, 2019. "Robust optimal design of zero/low energy buildings considering uncertainties and the impacts of objective functions," Applied Energy, Elsevier, vol. 254(C).
    16. Niu, Jide & Tian, Zhe & Lu, Yakai & Zhao, Hongfang & Lan, Bo, 2019. "A robust optimization model for designing the building cooling source under cooling load uncertainty," Applied Energy, Elsevier, vol. 241(C), pages 390-403.
    17. Homaei, Shabnam & Hamdy, Mohamed, 2020. "A robustness-based decision making approach for multi-target high performance buildings under uncertain scenarios," Applied Energy, Elsevier, vol. 267(C).
    18. Cheng, Qi & Wang, Shengwei & Yan, Chengchu, 2017. "Sequential Monte Carlo simulation for robust optimal design of cooling water system with quantified uncertainty and reliability," Energy, Elsevier, vol. 118(C), pages 489-501.
    19. Chen, Tengpeng & Cao, Yuhao & Qing, Xinlin & Zhang, Jingrui & Sun, Yuhao & Amaratunga, Gehan A.J., 2022. "Multi-energy microgrid robust energy management with a novel decision-making strategy," Energy, Elsevier, vol. 239(PA).
    20. Saif Jamal & Nadia M. L. Tan & Jagadeesh Pasupuleti, 2021. "A Review of Energy Management and Power Management Systems for Microgrid and Nanogrid Applications," Sustainability, MDPI, vol. 13(18), pages 1-31, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:328:y:2022:i:c:s0306261922013873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.