IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4453-d289894.html
   My bibliography  Save this article

Hierarchical Energy Management System for Microgrid Operation Based on Robust Model Predictive Control

Author

Listed:
  • Luis Gabriel Marín

    (Department of Electrical Engineering, University of Chile, Santiago 8370451, Chile
    Department of Electrical and Electronics Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
    Cycle System S.A.S, Bogotá 111311, Colombia)

  • Mark Sumner

    (Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham NG7 2RD, UK)

  • Diego Muñoz-Carpintero

    (Department of Electrical Engineering, University of Chile, Santiago 8370451, Chile
    Institute of Engineering Sciences, Universidad de O’Higgins, Rancagua 2841959, Chile)

  • Daniel Köbrich

    (Department of Electrical Engineering, University of Chile, Santiago 8370451, Chile)

  • Seksak Pholboon

    (Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham NG7 2RD, UK)

  • Doris Sáez

    (Department of Electrical Engineering, University of Chile, Santiago 8370451, Chile
    Instituto Sistemas Complejos de Ingeniería (ISCI), University of Chile, Santiago 8370397, Chile)

  • Alfredo Núñez

    (Section of Railway Engineering, Department of Engineering Structures, Delft University of Technology, 2628CN Delft, The Netherlands)

Abstract

This paper presents a two-level hierarchical energy management system (EMS) for microgrid operation that is based on a robust model predictive control (MPC) strategy. This EMS focuses on minimizing the cost of the energy drawn from the main grid and increasing self-consumption of local renewable energy resources, and brings benefits to the users of the microgrid as well as the distribution network operator (DNO). The higher level of the EMS comprises a robust MPC controller which optimizes energy usage and defines a power reference that is tracked by the lower-level real-time controller. The proposed EMS addresses the uncertainty of the predictions of the generation and end-user consumption profiles with the use of the robust MPC controller, which considers the optimization over a control policy where the uncertainty of the power predictions can be compensated either by the battery or main grid power consumption. Simulation results using data from a real urban community showed that when compared with an equivalent (non-robust) deterministic EMS (i.e., an EMS based on the same MPC formulation, but without the uncertainty handling), the proposed EMS based on robust MPC achieved reduced energy costs and obtained a more uniform grid power consumption, safer battery operation, and reduced peak loads.

Suggested Citation

  • Luis Gabriel Marín & Mark Sumner & Diego Muñoz-Carpintero & Daniel Köbrich & Seksak Pholboon & Doris Sáez & Alfredo Núñez, 2019. "Hierarchical Energy Management System for Microgrid Operation Based on Robust Model Predictive Control," Energies, MDPI, vol. 12(23), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4453-:d:289894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Palizban, Omid & Kauhaniemi, Kimmo & Guerrero, Josep M., 2014. "Microgrids in active network management – part II: System operation, power quality and protection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 440-451.
    2. Zhang, Yan & Fu, Lijun & Zhu, Wanlu & Bao, Xianqiang & Liu, Cang, 2018. "Robust model predictive control for optimal energy management of island microgrids with uncertainties," Energy, Elsevier, vol. 164(C), pages 1229-1241.
    3. Sun, Fengchun & Xiong, Rui & He, Hongwen & Li, Weiqing & Aussems, Johan Eric Emmanuel, 2012. "Model-based dynamic multi-parameter method for peak power estimation of lithium–ion batteries," Applied Energy, Elsevier, vol. 96(C), pages 378-386.
    4. Pascual, Julio & Barricarte, Javier & Sanchis, Pablo & Marroyo, Luis, 2015. "Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting," Applied Energy, Elsevier, vol. 158(C), pages 12-25.
    5. Daud, Abdel-Karim & Ismail, Mahmoud S., 2012. "Design of isolated hybrid systems minimizing costs and pollutant emissions," Renewable Energy, Elsevier, vol. 44(C), pages 215-224.
    6. Mahmoud Elkazaz & Mark Sumner & David Thomas, 2019. "Real-Time Energy Management for a Small Scale PV-Battery Microgrid: Modeling, Design, and Experimental Verification," Energies, MDPI, vol. 12(14), pages 1-26, July.
    7. Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.
    8. Parra, David & Norman, Stuart A. & Walker, Gavin S. & Gillott, Mark, 2017. "Optimum community energy storage for renewable energy and demand load management," Applied Energy, Elsevier, vol. 200(C), pages 358-369.
    9. Zhenya Ji & Xueliang Huang & Changfu Xu & Houtao Sun, 2016. "Accelerated Model Predictive Control for Electric Vehicle Integrated Microgrid Energy Management: A Hybrid Robust and Stochastic Approach," Energies, MDPI, vol. 9(11), pages 1-18, November.
    10. Pereira, M. & Muñoz de la Peña, D. & Limon, D., 2017. "Robust economic model predictive control of a community micro-grid," Renewable Energy, Elsevier, vol. 100(C), pages 3-17.
    11. Basil Kouvaritakis & Mark Cannon & Diego Muñoz-Carpintero, 2013. "Efficient prediction strategies for disturbance compensation in stochastic MPC," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(7), pages 1344-1353.
    12. Zhongwen Li & Chuanzhi Zang & Peng Zeng & Haibin Yu, 2016. "Combined Two-Stage Stochastic Programming and Receding Horizon Control Strategy for Microgrid Energy Management Considering Uncertainty," Energies, MDPI, vol. 9(7), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiara Bersani & Marco Fossa & Antonella Priarone & Roberto Sacile & Enrico Zero, 2021. "Model Predictive Control versus Traditional Relay Control in a High Energy Efficiency Greenhouse," Energies, MDPI, vol. 14(11), pages 1-21, June.
    2. Trinadh Pamulapati & Muhammed Cavus & Ishioma Odigwe & Adib Allahham & Sara Walker & Damian Giaouris, 2022. "A Review of Microgrid Energy Management Strategies from the Energy Trilemma Perspective," Energies, MDPI, vol. 16(1), pages 1-34, December.
    3. Mohamed Toub & Chethan R. Reddy & Rush D. Robinett & Mahdi Shahbakhti, 2021. "Integration and Optimal Control of MicroCSP with Building HVAC Systems: Review and Future Directions," Energies, MDPI, vol. 14(3), pages 1-41, January.
    4. Abdulrahman Alassi & Khaled Ahmed & Agustí Egea-Àlvarez & Omar Ellabban, 2021. "Innovative Energy Management System for MVDC Networks with Black-Start Capabilities," Energies, MDPI, vol. 14(8), pages 1-21, April.
    5. Wilson Pavon & Esteban Inga & Silvio Simani & Matthew Armstrong, 2023. "Optimal Hierarchical Control for Smart Grid Inverters Using Stability Margin Evaluating Transient Voltage for Photovoltaic System," Energies, MDPI, vol. 16(5), pages 1-16, March.
    6. Nawaz, Arshad & Wu, Jing & Ye, Jun & Dong, Yidi & Long, Chengnian, 2023. "Distributed MPC-based energy scheduling for islanded multi-microgrid considering battery degradation and cyclic life deterioration," Applied Energy, Elsevier, vol. 329(C).
    7. Hiranmay Samanta & Abhijit Das & Indrajt Bose & Joydip Jana & Ankur Bhattacharjee & Konika Das Bhattacharya & Samarjit Sengupta & Hiranmay Saha, 2021. "Field-Validated Communication Systems for Smart Microgrid Energy Management in a Rural Microgrid Cluster," Energies, MDPI, vol. 14(19), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Jianing & Li, Hangxin & Wang, Shengwei, 2022. "A quantitative reliability assessment and risk quantification method for microgrids considering supply and demand uncertainties," Applied Energy, Elsevier, vol. 328(C).
    2. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    3. Burgos-Mellado, Claudio & Orchard, Marcos E. & Kazerani, Mehrdad & Cárdenas, Roberto & Sáez, Doris, 2016. "Particle-filtering-based estimation of maximum available power state in Lithium-Ion batteries," Applied Energy, Elsevier, vol. 161(C), pages 349-363.
    4. Hafiz Abdul Muqeet & Hafiz Mudassir Munir & Haseeb Javed & Muhammad Shahzad & Mohsin Jamil & Josep M. Guerrero, 2021. "An Energy Management System of Campus Microgrids: State-of-the-Art and Future Challenges," Energies, MDPI, vol. 14(20), pages 1-34, October.
    5. Wei, Shangshang & Gao, Xianhua & Zhang, Yi & Li, Yiguo & Shen, Jiong & Li, Zuyi, 2021. "An improved stochastic model predictive control operation strategy of integrated energy system based on a single-layer multi-timescale framework," Energy, Elsevier, vol. 235(C).
    6. Ana Cabrera-Tobar & Alessandro Massi Pavan & Giovanni Petrone & Giovanni Spagnuolo, 2022. "A Review of the Optimization and Control Techniques in the Presence of Uncertainties for the Energy Management of Microgrids," Energies, MDPI, vol. 15(23), pages 1-38, December.
    7. Danny Espín-Sarzosa & Rodrigo Palma-Behnke & Oscar Núñez-Mata, 2020. "Energy Management Systems for Microgrids: Main Existing Trends in Centralized Control Architectures," Energies, MDPI, vol. 13(3), pages 1-32, January.
    8. Ihsan Ullah & Muhammad Babar Rasheed & Thamer Alquthami & Shahzadi Tayyaba, 2019. "A Residential Load Scheduling with the Integration of On-Site PV and Energy Storage Systems in Micro-Grid," Sustainability, MDPI, vol. 12(1), pages 1-36, December.
    9. Agüera-Pérez, Agustín & Palomares-Salas, José Carlos & González de la Rosa, Juan José & Florencias-Oliveros, Olivia, 2018. "Weather forecasts for microgrid energy management: Review, discussion and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 265-278.
    10. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    11. Pia Szichta & Ingela Tietze, 2020. "Sharing Economy in der Elektrizitätswirtschaft: Treiber und Hemmnisse [Title sharing economy in the electricity sector: drivers and barriers]," Sustainability Nexus Forum, Springer, vol. 28(3), pages 109-125, December.
    12. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    13. Ziad Ragab & Ehsan Pashajavid & Sumedha Rajakaruna, 2024. "Optimal Sizing and Economic Analysis of Community Battery Systems Considering Sensitivity and Uncertainty Factors," Energies, MDPI, vol. 17(18), pages 1-20, September.
    14. Juaidi, Adel & Montoya, Francisco G. & Ibrik, Imad H. & Manzano-Agugliaro, Francisco, 2016. "An overview of renewable energy potential in Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 943-960.
    15. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    16. Tan, Kang Miao & Padmanaban, Sanjeevikumar & Yong, Jia Ying & Ramachandaramurthy, Vigna K., 2019. "A multi-control vehicle-to-grid charger with bi-directional active and reactive power capabilities for power grid support," Energy, Elsevier, vol. 171(C), pages 1150-1163.
    17. Xiong, Rui & Sun, Fengchun & He, Hongwen & Nguyen, Trong Duy, 2013. "A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles," Energy, Elsevier, vol. 63(C), pages 295-308.
    18. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    19. Xiaohan Fang & Jinkuan Wang & Guanru Song & Yinghua Han & Qiang Zhao & Zhiao Cao, 2019. "Multi-Agent Reinforcement Learning Approach for Residential Microgrid Energy Scheduling," Energies, MDPI, vol. 13(1), pages 1-26, December.
    20. Xu Lei & Xi Zhao & Guiping Wang & Weiyu Liu, 2019. "A Novel Temperature–Hysteresis Model for Power Battery of Electric Vehicles with an Adaptive Joint Estimator on State of Charge and Power," Energies, MDPI, vol. 12(19), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4453-:d:289894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.