IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v253y2019ic71.html
   My bibliography  Save this article

Probabilistic optimal design of cleanroom air-conditioning systems facilitating optimal ventilation control under uncertainties

Author

Listed:
  • Zhuang, Chaoqun
  • Wang, Shengwei
  • Shan, Kui

Abstract

Buildings with spaces requiring strict temperature and humidity controls, such as pharmaceutical cleanrooms and semiconductor/microchip factories, have been growing very quickly in terms of total floor area and energy consumption. In such buildings, much of the energy is unnecessarily wasted due to the incoordination of system design and operation/control, especially under “off-design” and ever-changing ambient and load conditions. This paper, therefore, proposes a probabilistic optimal design method for cleanroom air-conditioning systems facilitating optimal ventilation control under uncertainties. To consider the effects of asynchronous loads in different zones/spaces with reduced computation demand, a probabilistic diversity factor method is proposed which is a simplified method to quantify the effects of uncertainties of space load diversities in multiple zones/spaces using diversity factors. The proposed design method is implemented and validated in the design optimization of air-conditioning systems for implementing four different ventilation control strategies considering possible and uncertain off-design conditions. The energy and economic performance as well as service satisfaction of the air-conditioning systems are also evaluated and compared. Results show that the proposed design method can obtain the optimal air-conditioning systems with minimum life-cycle cost and superior satisfaction of service.

Suggested Citation

  • Zhuang, Chaoqun & Wang, Shengwei & Shan, Kui, 2019. "Probabilistic optimal design of cleanroom air-conditioning systems facilitating optimal ventilation control under uncertainties," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:253:y:2019:i:c:71
    DOI: 10.1016/j.apenergy.2019.113576
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919312504
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min-Suk Jo & Jang-Hoon Shin & Won-Jun Kim & Jae-Weon Jeong, 2017. "Energy-Saving Benefits of Adiabatic Humidification in the Air Conditioning Systems of Semiconductor Cleanrooms," Energies, MDPI, vol. 10(11), pages 1-23, November.
    2. Mossolly, M. & Ghali, K. & Ghaddar, N., 2009. "Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm," Energy, Elsevier, vol. 34(1), pages 58-66.
    3. Shan, Kui & Wang, Shengwei, 2017. "Energy efficient design and control of cleanroom environment control systems in subtropical regions – A comparative analysis and on-site validation," Applied Energy, Elsevier, vol. 204(C), pages 582-595.
    4. Gang, Wenjie & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2015. "Robust optimal design of building cooling systems considering cooling load uncertainty and equipment reliability," Applied Energy, Elsevier, vol. 159(C), pages 265-275.
    5. Janssen, Hans, 2013. "Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 123-132.
    6. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "Uncertainty-based life-cycle analysis of near-zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 213(C), pages 486-498.
    7. Cheng, Qi & Wang, Shengwei & Yan, Chengchu & Xiao, Fu, 2017. "Probabilistic approach for uncertainty-based optimal design of chiller plants in buildings," Applied Energy, Elsevier, vol. 185(P2), pages 1613-1624.
    8. An, Jingjing & Yan, Da & Hong, Tianzhen & Sun, Kaiyu, 2017. "A novel stochastic modeling method to simulate cooling loads in residential districts," Applied Energy, Elsevier, vol. 206(C), pages 134-149.
    9. Daud, Abdel-Karim & Ismail, Mahmoud S., 2012. "Design of isolated hybrid systems minimizing costs and pollutant emissions," Renewable Energy, Elsevier, vol. 44(C), pages 215-224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Zhiyang & Jin, Xinqiao & Lyu, Yuan & Xue, Qi & Du, Zhimin, 2023. "A robust capacity configuration selection method of multiple-chiller system concerned with the uncertainty of annual hourly load profile," Energy, Elsevier, vol. 282(C).
    2. Zhuang, Chaoqun & Wang, Shengwei, 2020. "Risk-based online robust optimal control of air-conditioning systems for buildings requiring strict humidity control considering measurement uncertainties," Applied Energy, Elsevier, vol. 261(C).
    3. Min, Yunran & Chen, Yi & Shi, Wenchao & Yang, Hongxing, 2021. "Applicability of indirect evaporative cooler for energy recovery in hot and humid areas: Comparison with heat recovery wheel," Applied Energy, Elsevier, vol. 287(C).
    4. Zhuang, Chaoqun & Wang, Shengwei & Shan, Kui, 2020. "A risk-based robust optimal chiller sequencing control strategy for energy-efficient operation considering measurement uncertainties," Applied Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kotireddy, Rajesh & Hoes, Pieter-Jan & Hensen, Jan L.M., 2018. "A methodology for performance robustness assessment of low-energy buildings using scenario analysis," Applied Energy, Elsevier, vol. 212(C), pages 428-442.
    2. Li, Hangxin & Wang, Shengwei, 2020. "Coordinated robust optimal design of building envelope and energy systems for zero/low energy buildings considering uncertainties," Applied Energy, Elsevier, vol. 265(C).
    3. Yamile Díaz Torres & Paride Gullo & Hernán Hernández Herrera & Migdalia Torres del Toro & Mario A. Álvarez Guerra & Jorge Iván Silva Ortega & Arne Speerforck, 2022. "Statistical Analysis of Design Variables in a Chiller Plant and Their Influence on Energy Consumption and Life Cycle Cost," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    4. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    5. Li, Hangxin & Wang, Shengwei, 2017. "Probabilistic optimal design concerning uncertainties and on-site adaptive commissioning of air-conditioning water pump systems in buildings," Applied Energy, Elsevier, vol. 202(C), pages 53-65.
    6. Li, Hangxin & Wang, Shengwei, 2022. "Two-time-scale coordinated optimal control of building energy systems for demand response considering forecast uncertainties," Energy, Elsevier, vol. 253(C).
    7. Li, Hangxin & Wang, Shengwei, 2022. "Comparative assessment of alternative MPC strategies using real meteorological data and their enhancement for optimal utilization of flexibility-resources in buildings," Energy, Elsevier, vol. 244(PA).
    8. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "Uncertainty-based life-cycle analysis of near-zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 213(C), pages 486-498.
    9. Luo, Jianing & Li, Hangxin & Wang, Shengwei, 2022. "A quantitative reliability assessment and risk quantification method for microgrids considering supply and demand uncertainties," Applied Energy, Elsevier, vol. 328(C).
    10. Niu, Jide & Tian, Zhe & Yue, Lu, 2020. "Robust optimal design of building cooling sources considering the uncertainty and cross-correlation of demand and source," Applied Energy, Elsevier, vol. 265(C).
    11. Jia, Zhiyang & Jin, Xinqiao & Lyu, Yuan & Xue, Qi & Du, Zhimin, 2023. "A robust capacity configuration selection method of multiple-chiller system concerned with the uncertainty of annual hourly load profile," Energy, Elsevier, vol. 282(C).
    12. Li, Hangxin & Wang, Shengwei, 2019. "Coordinated optimal design of zero/low energy buildings and their energy systems based on multi-stage design optimization," Energy, Elsevier, vol. 189(C).
    13. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    14. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    15. Muhammad Fayaz & DoHyeun Kim, 2018. "Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic," Energies, MDPI, vol. 11(1), pages 1-22, January.
    16. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    17. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    18. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    19. Abdirizak Omar & Mouadh Addassi & Volker Vahrenkamp & Hussein Hoteit, 2021. "Co-Optimization of CO 2 Storage and Enhanced Gas Recovery Using Carbonated Water and Supercritical CO 2," Energies, MDPI, vol. 14(22), pages 1-21, November.
    20. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:253:y:2019:i:c:71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.