IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v92y2007i2p187-199.html
   My bibliography  Save this article

Deterministic and stochastic approach for safety and reliability optimization of captive power plant maintenance scheduling using GA/SA-based hybrid techniques: A comparison of results

Author

Listed:
  • Mohanta, Dusmanta Kumar
  • Sadhu, Pradip Kumar
  • Chakrabarti, R.

Abstract

This paper presents a comparison of results for optimization of captive power plant maintenance scheduling using genetic algorithm (GA) as well as hybrid GA/simulated annealing (SA) techniques. As utilities catered by captive power plants are very sensitive to power failure, therefore both deterministic and stochastic reliability objective functions have been considered to incorporate statutory safety regulations for maintenance of boilers, turbines and generators. The significant contribution of this paper is to incorporate stochastic feature of generating units and that of load using levelized risk method. Another significant contribution of this paper is to evaluate confidence interval for loss of load probability (LOLP) because some variations from optimum schedule are anticipated while executing maintenance schedules due to different real-life unforeseen exigencies. Such exigencies are incorporated in terms of near-optimum schedules obtained from hybrid GA/SA technique during the final stages of convergence. Case studies corroborate that same optimum schedules are obtained using GA and hybrid GA/SA for respective deterministic and stochastic formulations. The comparison of results in terms of interval of confidence for LOLP indicates that levelized risk method adequately incorporates the stochastic nature of power system as compared with levelized reserve method. Also the interval of confidence for LOLP denotes the possible risk in a quantified manner and it is of immense use from perspective of captive power plants intended for quality power.

Suggested Citation

  • Mohanta, Dusmanta Kumar & Sadhu, Pradip Kumar & Chakrabarti, R., 2007. "Deterministic and stochastic approach for safety and reliability optimization of captive power plant maintenance scheduling using GA/SA-based hybrid techniques: A comparison of results," Reliability Engineering and System Safety, Elsevier, vol. 92(2), pages 187-199.
  • Handle: RePEc:eee:reensy:v:92:y:2007:i:2:p:187-199
    DOI: 10.1016/j.ress.2005.11.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832005002711
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2005.11.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Özgür-Ünlüakın, Demet & Türkali, Busenur & Karacaörenli, Ayşe & Çağlar Aksezer, S., 2019. "A DBN based reactive maintenance model for a complex system in thermal power plants," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    2. Luo, Jianing & Li, Hangxin & Wang, Shengwei, 2022. "A quantitative reliability assessment and risk quantification method for microgrids considering supply and demand uncertainties," Applied Energy, Elsevier, vol. 328(C).
    3. Cholette, Michael E. & Yu, Hongyang & Borghesani, Pietro & Ma, Lin & Kent, Geoff, 2019. "Degradation modeling and condition-based maintenance of boiler heat exchangers using gamma processes," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 184-196.
    4. Doostparast, Mohammad & Kolahan, Farhad & Doostparast, Mahdi, 2014. "A reliability-based approach to optimize preventive maintenance scheduling for coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 98-106.
    5. Hong Zhang & Hao Sun & Qian Zhang & Guanxun Kong, 2018. "Microgrid Spinning Reserve Optimization with Improved Information Gap Decision Theory," Energies, MDPI, vol. 11(9), pages 1-17, September.
    6. Marhavilas, P.K. & Koulouriotis, D.E., 2012. "A combined usage of stochastic and quantitative risk assessment methods in the worksites: Application on an electric power provider," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 36-46.
    7. Ming Tan, Cher & Raghavan, Nagarajan, 2008. "A framework to practical predictive maintenance modeling for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1138-1150.
    8. Perez-Canto, Salvador & Rubio-Romero, Juan Carlos, 2013. "A model for the preventive maintenance scheduling of power plants including wind farms," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 67-75.
    9. Froger, Aurélien & Gendreau, Michel & Mendoza, Jorge E. & Pinson, Éric & Rousseau, Louis-Martin, 2016. "Maintenance scheduling in the electricity industry: A literature review," European Journal of Operational Research, Elsevier, vol. 251(3), pages 695-706.
    10. Mohammad Doostparast & Farhad Kolahan & Mahdi Doostparast, 2015. "Optimisation of PM scheduling for multi-component systems – a simulated annealing approach," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(7), pages 1199-1207, May.
    11. Jagtap, Hanumant P. & Bewoor, Anand K. & Kumar, Ravinder & Ahmadi, Mohammad Hossein & Chen, Lingen, 2020. "Performance analysis and availability optimization to improve maintenance schedule for the turbo-generator subsystem of a thermal power plant using particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Liming Yao & Zhongwen Xu & Ziqiang Zeng, 2020. "A Soft‐Path Solution to Risk Reduction by Modeling Medical Waste Disposal Center Location‐Allocation Optimization," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1863-1886, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:92:y:2007:i:2:p:187-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.