IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v159y2015icp265-275.html
   My bibliography  Save this article

Robust optimal design of building cooling systems considering cooling load uncertainty and equipment reliability

Author

Listed:
  • Gang, Wenjie
  • Wang, Shengwei
  • Xiao, Fu
  • Gao, Dian-ce

Abstract

Appropriate design provides the cooling system to achieve good performance with low energy consumption and cost. Conventional design method in heating, ventilation and air-conditioning (HVAC) field usually selects the cooling system based on certain cooling load and experiences. The performance of the selected cooling system may deviate from the expectations due to cooling load uncertainty. This paper proposes a novel design method to obtain the robust optimal cooling systems for buildings by quantifying the uncertainty in cooling load calculation and equipment reliability in operation comprehensively. By quantifying the cooling load uncertainty with Monte Carlo method and chiller reliability using Markov method, the robust optimal cooling system is obtained with minimum annual total cost. By applying the new method in the design of the cooling system for a building, its function and performance as well as potential benefits are demonstrated and evaluated. Results show that the proposed method can obtain the optimal cooling systems with low cost and high robustness and provides a promising means for designers to make their best design decisions based on quantitative assessment according to their priority.

Suggested Citation

  • Gang, Wenjie & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2015. "Robust optimal design of building cooling systems considering cooling load uncertainty and equipment reliability," Applied Energy, Elsevier, vol. 159(C), pages 265-275.
  • Handle: RePEc:eee:appene:v:159:y:2015:i:c:p:265-275
    DOI: 10.1016/j.apenergy.2015.08.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915010065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.08.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yıldız, Yusuf & Arsan, Zeynep Durmuş, 2011. "Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates," Energy, Elsevier, vol. 36(7), pages 4287-4296.
    2. Janssen, Hans, 2013. "Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 123-132.
    3. Gang, Wenjie & Wang, Shengwei & Gao, Diance & Xiao, Fu, 2015. "Performance assessment of district cooling systems for a new development district at planning stage," Applied Energy, Elsevier, vol. 140(C), pages 33-43.
    4. Heiselberg, Per & Brohus, Henrik & Hesselholt, Allan & Rasmussen, Henrik & Seinre, Erkki & Thomas, Sara, 2009. "Application of sensitivity analysis in design of sustainable buildings," Renewable Energy, Elsevier, vol. 34(9), pages 2030-2036.
    5. Chinese, Damiana & Nardin, Gioacchino & Saro, Onorio, 2011. "Multi-criteria analysis for the selection of space heating systems in an industrial building," Energy, Elsevier, vol. 36(1), pages 556-565.
    6. Frangopoulos, Christos A. & Dimopoulos, George G., 2004. "Effect of reliability considerations on the optimal synthesis, design and operation of a cogeneration system," Energy, Elsevier, vol. 29(3), pages 309-329.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hangxin & Wang, Shengwei, 2022. "Two-time-scale coordinated optimal control of building energy systems for demand response considering forecast uncertainties," Energy, Elsevier, vol. 253(C).
    2. Yamile Díaz Torres & Paride Gullo & Hernán Hernández Herrera & Migdalia Torres del Toro & Roy Reyes Calvo & Jorge Iván Silva Ortega & Julio Gómez Sarduy, 2023. "Energy Performance Comparison of a Chiller Plant Using the Conventional Staging and the Co-Design Approach in the Early Design Phase of Hotel Buildings," Energies, MDPI, vol. 16(9), pages 1-23, April.
    3. Zhuang, Chaoqun & Wang, Shengwei & Shan, Kui, 2019. "Probabilistic optimal design of cleanroom air-conditioning systems facilitating optimal ventilation control under uncertainties," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Luo, Jianing & Li, Hangxin & Wang, Shengwei, 2022. "A quantitative reliability assessment and risk quantification method for microgrids considering supply and demand uncertainties," Applied Energy, Elsevier, vol. 328(C).
    5. Thangavelu, Sundar Raj & Myat, Aung & Khambadkone, Ashwin, 2017. "Energy optimization methodology of multi-chiller plant in commercial buildings," Energy, Elsevier, vol. 123(C), pages 64-76.
    6. Niu, Jide & Tian, Zhe & Yue, Lu, 2020. "Robust optimal design of building cooling sources considering the uncertainty and cross-correlation of demand and source," Applied Energy, Elsevier, vol. 265(C).
    7. Jia, Zhiyang & Jin, Xinqiao & Lyu, Yuan & Xue, Qi & Du, Zhimin, 2023. "A robust capacity configuration selection method of multiple-chiller system concerned with the uncertainty of annual hourly load profile," Energy, Elsevier, vol. 282(C).
    8. Zhang, Yingbo & Li, Hangxin & Wang, Shengwei, 2024. "Life-cycle optimal design and energy benefits of centralized cooling systems for data centers concerning progressive loading," Renewable Energy, Elsevier, vol. 230(C).
    9. Li, Hangxin & Wang, Shengwei, 2017. "Probabilistic optimal design concerning uncertainties and on-site adaptive commissioning of air-conditioning water pump systems in buildings," Applied Energy, Elsevier, vol. 202(C), pages 53-65.
    10. Kotireddy, Rajesh & Hoes, Pieter-Jan & Hensen, Jan L.M., 2018. "A methodology for performance robustness assessment of low-energy buildings using scenario analysis," Applied Energy, Elsevier, vol. 212(C), pages 428-442.
    11. Li, Hangxin & Wang, Shengwei, 2020. "Coordinated robust optimal design of building envelope and energy systems for zero/low energy buildings considering uncertainties," Applied Energy, Elsevier, vol. 265(C).
    12. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    13. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "Uncertainty-based life-cycle analysis of near-zero energy buildings for performance improvements," Applied Energy, Elsevier, vol. 213(C), pages 486-498.
    14. Niu, Jide & Tian, Zhe & Lu, Yakai & Zhao, Hongfang & Lan, Bo, 2019. "A robust optimization model for designing the building cooling source under cooling load uncertainty," Applied Energy, Elsevier, vol. 241(C), pages 390-403.
    15. Cheng, Qi & Wang, Shengwei & Yan, Chengchu, 2017. "Sequential Monte Carlo simulation for robust optimal design of cooling water system with quantified uncertainty and reliability," Energy, Elsevier, vol. 118(C), pages 489-501.
    16. Li, Hangxin & Wang, Shengwei & Tang, Rui, 2019. "Robust optimal design of zero/low energy buildings considering uncertainties and the impacts of objective functions," Applied Energy, Elsevier, vol. 254(C).
    17. Yamile Díaz Torres & Paride Gullo & Hernán Hernández Herrera & Migdalia Torres del Toro & Mario A. Álvarez Guerra & Jorge Iván Silva Ortega & Arne Speerforck, 2022. "Statistical Analysis of Design Variables in a Chiller Plant and Their Influence on Energy Consumption and Life Cycle Cost," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    18. Georgios P. Trachanas & Aikaterini Forouli & Nikolaos Gkonis & Haris Doukas, 2020. "Hedging uncertainty in energy efficiency strategies: a minimax regret analysis," Operational Research, Springer, vol. 20(4), pages 2229-2244, December.
    19. Kristjanpoller, Fredy & Crespo, Adolfo & Barberá, Luis & Viveros, Pablo, 2017. "Biomethanation plant assessment based on reliability impact on operational effectiveness," Renewable Energy, Elsevier, vol. 101(C), pages 301-310.
    20. Frangopoulos, Christos A., 2018. "Recent developments and trends in optimization of energy systems," Energy, Elsevier, vol. 164(C), pages 1011-1020.
    21. Li, Hangxin & Wang, Shengwei, 2022. "Comparative assessment of alternative MPC strategies using real meteorological data and their enhancement for optimal utilization of flexibility-resources in buildings," Energy, Elsevier, vol. 244(PA).
    22. Homaei, Shabnam & Hamdy, Mohamed, 2020. "A robustness-based decision making approach for multi-target high performance buildings under uncertain scenarios," Applied Energy, Elsevier, vol. 267(C).
    23. Li, Hangxin & Wang, Shengwei, 2019. "Coordinated optimal design of zero/low energy buildings and their energy systems based on multi-stage design optimization," Energy, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    2. Yildiz, Yusuf & Korkmaz, Koray & Göksal Özbalta, Türkan & Durmus Arsan, Zeynep, 2012. "An approach for developing sensitive design parameter guidelines to reduce the energy requirements of low-rise apartment buildings," Applied Energy, Elsevier, vol. 93(C), pages 337-347.
    3. Su, Ziyi & Li, Xiaofeng, 2022. "Extraction of key parameters and simplification of sub-system energy models using sensitivity analysis in subway stations," Energy, Elsevier, vol. 261(PA).
    4. Waqas Ahmed Mahar & Griet Verbeeck & Sigrid Reiter & Shady Attia, 2020. "Sensitivity Analysis of Passive Design Strategies for Residential Buildings in Cold Semi-Arid Climates," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    5. Enrico Fabrizio & Valentina Monetti, 2015. "Methodologies and Advancements in the Calibration of Building Energy Models," Energies, MDPI, vol. 8(4), pages 1-27, March.
    6. Gang, Wenjie & Augenbroe, Godfried & Wang, Shengwei & Fan, Cheng & Xiao, Fu, 2016. "An uncertainty-based design optimization method for district cooling systems," Energy, Elsevier, vol. 102(C), pages 516-527.
    7. Wan Mohd Nazi, Wan Iman & Royapoor, Mohammad & Wang, Yaodong & Roskilly, Anthony Paul, 2017. "Office building cooling load reduction using thermal analysis method – A case study," Applied Energy, Elsevier, vol. 185(P2), pages 1574-1584.
    8. Zhao, Zeming & Li, Hangxin & Wang, Shengwei, 2022. "Identification of the key design parameters of Zero/low energy buildings and the impacts of climate and building morphology," Applied Energy, Elsevier, vol. 328(C).
    9. Zakula, Tea & Badun, Nikola & Ferdelji, Nenad & Ugrina, Ivo, 2021. "Framework for the ISO 52016 standard accuracy prediction based on the in-depth sensitivity analysis," Applied Energy, Elsevier, vol. 298(C).
    10. Li, Hangxin & Wang, Shengwei & Cheung, Howard, 2018. "Sensitivity analysis of design parameters and optimal design for zero/low energy buildings in subtropical regions," Applied Energy, Elsevier, vol. 228(C), pages 1280-1291.
    11. Julia Reisinger & Patrick Hollinsky & Iva Kovacic, 2021. "Design Guideline for Flexible Industrial Buildings Integrating Industry 4.0 Parameters," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    12. Mohamed Ali Elleuch & Marwa Mallek & Ahmed Frikha & Wafik Hachicha & Awad M. Aljuaid & Murad Andejany, 2021. "Solving a Multiple User Energy Source Selection Problem Using a Fuzzy Multi-Criteria Group Decision-Making Approach," Energies, MDPI, vol. 14(14), pages 1-16, July.
    13. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).
    14. Behrooz Shahmoradi & Reza Hafezi & Payam Chiniforooshan, 2024. "Industrial Development Policies Based on Economic Complexity Under Plausible Scenarios: Case of Iran 2027," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 6578-6603, June.
    15. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    16. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    17. Liang Zhao & Wei Zhang & Wenshun Wang, 2022. "BIM-Based Multi-Objective Optimization of Low-Carbon and Energy-Saving Buildings," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    18. Abdirizak Omar & Mouadh Addassi & Volker Vahrenkamp & Hussein Hoteit, 2021. "Co-Optimization of CO 2 Storage and Enhanced Gas Recovery Using Carbonated Water and Supercritical CO 2," Energies, MDPI, vol. 14(22), pages 1-21, November.
    19. Pisello, Anna Laura & Goretti, Michele & Cotana, Franco, 2012. "A method for assessing buildings’ energy efficiency by dynamic simulation and experimental activity," Applied Energy, Elsevier, vol. 97(C), pages 419-429.
    20. Silveira, Jose Luz & Lamas, Wendell de Queiroz & Tuna, Celso Eduardo & Villela, Iraides Aparecida de Castro & Miro, Laura Siso, 2012. "Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2894-2906.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:159:y:2015:i:c:p:265-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.