IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v323y2022ics0306261922009382.html
   My bibliography  Save this article

Coupling nonlinearities and dynamics between the hybrid tri-stable piezoelectric energy harvester and nonlinear interfaced circuit

Author

Listed:
  • Zhu, Qiangguo
  • Wang, Guangqing
  • Zheng, Youcheng
  • Liu, Zhoulong
  • Zhou, Shuo
  • Zhang, Beiqi

Abstract

Tri-stable piezoelectric vibration energy harvester (T-PVEH) recently has been widely investigated due to its good electro-mechanical performance. However, most studies emphasizing the mechanical configuration usually only regard the interfaced circuit as equivalent to a linear resistance load. The coupling nonlinearities and dynamics between the T-PVEH and the nonlinear interfaced circuit are yet to be well understood. Considering a hybrid T-PVEH interfacing with a nonlinear AC-DC rectifying circuit, this paper aims to derive its electro-mechanical equations to characterize the mechanical and energetic dynamics, as well as the coupling nonlinearities between the mechanical terminal and electrical terminal, which can be helpful to optimize the T-PVEH configuration and the circuit topology, so as to enhance the energy harvesting efficiency and effective broadband. The general harmonic balance solutions and the Jacobian matrix used to estimate the solution stability are presented based on the derived electro-mechanical equations. The influences of the magnetic distance, coupling constant and load resistance on the mechanical and energetic dynamics are simulated. The contradiction between the bandwidth and efficiency caused by the coupling nonlinearities is also analyzed. The results show that proper selection of the magnetic distance, load resistance and coupling constant in their suitable range is beneficial to enhance the effective bandwidth and harvested power of the global inter-well motions. It also shows that strong coupling constant with large load resistance will introduce additional mechanical damping and stiffness, attenuating the response amplitude and effective bandwidth of the system. Experimental results show reasonable agreement with the simulations. The rectified voltage obtained by experiment is 2.6 V, which meets the power supplying demand of the low-powered electronic devices.

Suggested Citation

  • Zhu, Qiangguo & Wang, Guangqing & Zheng, Youcheng & Liu, Zhoulong & Zhou, Shuo & Zhang, Beiqi, 2022. "Coupling nonlinearities and dynamics between the hybrid tri-stable piezoelectric energy harvester and nonlinear interfaced circuit," Applied Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009382
    DOI: 10.1016/j.apenergy.2022.119636
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922009382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119636?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Tan, Ting & Zhang, Wenming & Liao, Wei-Hsin, 2021. "Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations," Applied Energy, Elsevier, vol. 302(C).
    2. Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
    3. Liu, Weiqun & Qin, Gang & Zhu, Qiao & Hu, Guangdi, 2018. "Synchronous extraction circuit with self-adaptive peak-detection mechanical switches design for piezoelectric energy harvesting," Applied Energy, Elsevier, vol. 230(C), pages 1292-1303.
    4. Yildirim, Tanju & Ghayesh, Mergen H. & Li, Weihua & Alici, Gursel, 2017. "A review on performance enhancement techniques for ambient vibration energy harvesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 435-449.
    5. Lallart, Mickaël & Zhou, Shengxi & Yang, Zhichun & Yan, Linjuan & Li, Kui & Chen, Yu, 2020. "Coupling mechanical and electrical nonlinearities: The effect of synchronized discharging on tristable energy harvesters," Applied Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Li & Kan, Junwu & Lin, Shijie & Liao, Weilin & Yang, Jianwen & Liu, Panpan & Wang, Shuyun & Zhang, Zhonghua, 2024. "Design and performance evaluation of a pendulous piezoelectric rotational energy harvester through magnetic plucking of a fan-shaped hanging composite plate," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Wolszczak, Piotr & Yurchenko, Daniil, 2022. "Nonlinear dynamics of a new energy harvesting system with quasi-zero stiffness," Applied Energy, Elsevier, vol. 307(C).
    2. Khazaee, Majid & Huber, John E. & Rosendahl, Lasse & Rezania, Alireza, 2021. "The investigation of viscous and structural damping for piezoelectric energy harvesters using only time-domain voltage measurements," Applied Energy, Elsevier, vol. 285(C).
    3. Rashid Naseer & Huliang Dai & Abdessattar Abdelkefi & Lin Wang, 2019. "Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics," Energies, MDPI, vol. 13(1), pages 1-24, December.
    4. Alqaleiby, Hossam & Ayyad, Mahmoud & Hajj, Muhammad R. & Ragab, Saad A. & Zuo, Lei, 2024. "Effects of piezoelectric energy harvesting from a morphing flapping tail on its performance," Applied Energy, Elsevier, vol. 353(PA).
    5. He, Lipeng & Liu, Lei & Zhou, Jianwen & Yu, Gang & Sun, Baoyu & Cheng, Guangming, 2022. "Design and analysis of a double-acting nonlinear wideband piezoelectric energy harvester under plucking and collision," Energy, Elsevier, vol. 239(PD).
    6. Xu, Pengfei & Gong, Xulu & Wang, Haotian & Li, Yiwei & Liu, Di, 2023. "A study of stochastic resonance in tri-stable generalized Langevin system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    7. Shan, Xiaobiao & Tian, Haigang & Chen, Danpeng & Xie, Tao, 2019. "A curved panel energy harvester for aeroelastic vibration," Applied Energy, Elsevier, vol. 249(C), pages 58-66.
    8. Qin, Jian & Zhang, Zhenquan & Huang, Shuting & Wang, Wei & Liu, Yanjun & Xue, Gang, 2024. "Energy capture performance enhancement of point absorber wave energy converter using magnetic tristable and quadstable mechanisms," Renewable Energy, Elsevier, vol. 221(C).
    9. Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Tan, Ting & Zhang, Wenming & Liao, Wei-Hsin, 2021. "Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations," Applied Energy, Elsevier, vol. 302(C).
    10. Nik Fakhri Nek Daud & Ruzlaini Ghoni, 2020. "Vibration Energy Harvesting Technique: A Comprehensive Review," Engineering Heritage Journal (GWK), Zibeline International Publishing, vol. 4(2), pages 46-48:4, October.
    11. Michele Bonnin & Fabio L. Traversa & Fabrizio Bonani, 2022. "An Impedance Matching Solution to Increase the Harvested Power and Efficiency of Nonlinear Piezoelectric Energy Harvesters," Energies, MDPI, vol. 15(8), pages 1-17, April.
    12. Vidal, João V. & Carneiro, Pedro M.R. & Soares dos Santos, Marco P., 2024. "A complete physical 3D model from first principles of vibrational-powered electromagnetic generators," Applied Energy, Elsevier, vol. 357(C).
    13. Carneiro, Pedro & Soares dos Santos, Marco P. & Rodrigues, André & Ferreira, Jorge A.F. & Simões, José A.O. & Marques, A. Torres & Kholkin, Andrei L., 2020. "Electromagnetic energy harvesting using magnetic levitation architectures: A review," Applied Energy, Elsevier, vol. 260(C).
    14. Liu, Weiqun & Yuan, Zhongxin & Zhang, Shuang & Zhu, Qiao, 2019. "Enhanced broadband generator of dual buckled beams with simultaneous translational and torsional coupling," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Hamlehdar, Maryam & Kasaeian, Alibakhsh & Safaei, Mohammad Reza, 2019. "Energy harvesting from fluid flow using piezoelectrics: A critical review," Renewable Energy, Elsevier, vol. 143(C), pages 1826-1838.
    16. Tian, Haigang & Shan, Xiaobiao & Sui, Guangdong & Xie, Tao, 2022. "Enhanced performance of piezoaeroelastic energy harvester with rod-shaped attachments," Energy, Elsevier, vol. 238(PB).
    17. Madinei, H. & Haddad Khodaparast, H. & Friswell, M.I. & Adhikari, S., 2018. "Minimising the effects of manufacturing uncertainties in MEMS Energy harvesters," Energy, Elsevier, vol. 149(C), pages 990-999.
    18. Shan, Xiaobiao & Li, Hongliang & Yang, Yuancai & Feng, Ju & Wang, Yicong & Xie, Tao, 2019. "Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration," Energy, Elsevier, vol. 172(C), pages 134-140.
    19. Wang, Chen & Lai, Siu-Kai & Wang, Jia-Mei & Feng, Jing-Jing & Ni, Yi-Qing, 2021. "An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power," Applied Energy, Elsevier, vol. 291(C).
    20. Tingting Zhang & Yanfei Jin, 2024. "Stochastic optimal control of a tri-stable energy harvester with the P-SSHI circuit under colored noise," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(1), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.