IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01187-y.html
   My bibliography  Save this article

Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface

Author

Listed:
  • Chuang Yu

    (Delft University of Technology)

  • Swapna Ganapathy

    (Delft University of Technology)

  • Ernst R. H. van Eck

    (Radboud University)

  • Heng Wang

    (Delft University of Technology)

  • Shibabrata Basak

    (Delft University of Technology)

  • Zhaolong Li

    (Delft University of Technology)

  • Marnix Wagemaker

    (Delft University of Technology)

Abstract

Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode–electrolyte interface. However, direct assessment of the lithium-ion transport across realistic electrode–electrolyte interfaces is tedious. Here we report two-dimensional lithium-ion exchange NMR accessing the spontaneous lithium-ion transport, providing insight on the influence of electrode preparation and battery cycling on the lithium-ion transport over the interface between an argyrodite solid-electrolyte and a sulfide electrode. Interfacial conductivity is shown to depend strongly on the preparation method and demonstrated to drop dramatically after a few electrochemical (dis)charge cycles due to both losses in interfacial contact and increased diffusional barriers. The reported exchange NMR facilitates non-invasive and selective measurement of lithium-ion interfacial transport, providing insight that can guide the electrolyte–electrode interface design for future all-solid-state batteries.

Suggested Citation

  • Chuang Yu & Swapna Ganapathy & Ernst R. H. van Eck & Heng Wang & Shibabrata Basak & Zhaolong Li & Marnix Wagemaker, 2017. "Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01187-y
    DOI: 10.1038/s41467-017-01187-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01187-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01187-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sudarshan Narayanan & Ulderico Ulissi & Joshua S. Gibson & Yvonne A. Chart & Robert S. Weatherup & Mauro Pasta, 2022. "Effect of current density on the solid electrolyte interphase formation at the lithium∣Li6PS5Cl interface," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Guo, Changxiang & Cao, Yafei & Li, Junfeng & Li, Haipeng & Kumar Arumugam, Senthil & Oleksandr, Sokolskyi & Chen, Fei, 2022. "Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries," Applied Energy, Elsevier, vol. 323(C).
    3. Donghwan Ji & Jae Min Park & Myeong Seon Oh & Thanh Loc Nguyen & Hyunsu Shin & Jae Seong Kim & Dukjoon Kim & Ho Seok Park & Jaeyun Kim, 2022. "Superstrong, superstiff, and conductive alginate hydrogels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Ming Liu & Chao Wang & Chenglong Zhao & Eveline Maas & Kui Lin & Violetta A. Arszelewska & Baohua Li & Swapna Ganapathy & Marnix Wagemaker, 2021. "Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Hiram Kwak & Jae-Seung Kim & Daseul Han & Jong Seok Kim & Juhyoun Park & Gihan Kwon & Seong-Min Bak & Unseon Heo & Changhyun Park & Hyun-Wook Lee & Kyung-Wan Nam & Dong-Hwa Seo & Yoon Seok Jung, 2023. "Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01187-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.