IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v322y2022ics030626192200767x.html
   My bibliography  Save this article

Flow models of perforated manifolds and plates for the design of a large thermal storage tank for district heating with minimal maldistribution and thermocline growth

Author

Listed:
  • Pilotelli, M.
  • Grassi, B.
  • Lezzi, A.M.
  • Beretta, G.P.

Abstract

Large water tanks are used as thermal energy storage components in district heating systems to store sensible heat produced by intermittent energy sources and to decouple the production of thermal energy from its demand. Good thermal stratification is crucial for energy storage efficiency, thus flow maldistribution and mixing of water layers at different temperatures should be minimized. This paper proposes an innovative internal flow distribution configuration for a large-size thermal energy storage, and develops new simplified analytical models for the choice of its design parameters. In the novel configuration, water is injected into (and collected from) the cap volumes of the tank by flowing radially inward (outward) through several small orifices of a peripheral toroidal manifold. Two horizontal perforated plates cover the full cross sections downstream of the manifolds and rectify the vertical flow, thus reducing mixing. Uniform perforation pitch was analytically demonstrated to be the most reasonable solution both for the toroidal distributors and for the rectifying plates. A 1D model was developed to predict the time evolution of the vertical temperature distribution in the tank. The turbulence-related parameters that could not be inferred from the existing fluid-mechanics literature were initially estimated with CFD simulations. The results of CFD-calibrated model were then compared to experimental data obtained from a full-scale large water-tank facility recently built in Brescia according to the proposed design. After a re-calibration of the exponent defining the decay of homogeneous turbulence downstream of the perforated plates, good agreement was found between measured and predicted vertical temperatures. With the novel inlet design, a thermocline of about 0.5 m is established immediately downstream of the perforated plate, and remains practically constant along time. The model is important to minimize and control the thermocline thickness so as to maximize the recoverable thermal energy, not only at the tank design stage but also to identify optimal loading and unloading protocols.

Suggested Citation

  • Pilotelli, M. & Grassi, B. & Lezzi, A.M. & Beretta, G.P., 2022. "Flow models of perforated manifolds and plates for the design of a large thermal storage tank for district heating with minimal maldistribution and thermocline growth," Applied Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:appene:v:322:y:2022:i:c:s030626192200767x
    DOI: 10.1016/j.apenergy.2022.119436
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192200767X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guelpa, Elisa & Marincioni, Ludovica & Verda, Vittorio, 2019. "Towards 4th generation district heating: Prediction of building thermal load for optimal management," Energy, Elsevier, vol. 171(C), pages 510-522.
    2. Novo, Amaya V. & Bayon, Joseba R. & Castro-Fresno, Daniel & Rodriguez-Hernandez, Jorge, 2010. "Review of seasonal heat storage in large basins: Water tanks and gravel-water pits," Applied Energy, Elsevier, vol. 87(2), pages 390-397, February.
    3. Romanchenko, Dmytro & Odenberger, Mikael & Göransson, Lisa & Johnsson, Filip, 2017. "Impact of electricity price fluctuations on the operation of district heating systems: A case study of district heating in Göteborg, Sweden," Applied Energy, Elsevier, vol. 204(C), pages 16-30.
    4. Chung, Jae Dong & Cho, Sung Hwan & Tae, Choon Seob & Yoo, Hoseon, 2008. "The effect of diffuser configuration on thermal stratification in a rectangular storage tank," Renewable Energy, Elsevier, vol. 33(10), pages 2236-2245.
    5. Deng, Na & He, Guansong & Gao, Yuan & Yang, Bin & Zhao, Jun & He, Shunming & Tian, Xue, 2017. "Comparative analysis of optimal operation strategies for district heating and cooling system based on design and actual load," Applied Energy, Elsevier, vol. 205(C), pages 577-588.
    6. Verda, Vittorio & Colella, Francesco, 2011. "Primary energy savings through thermal storage in district heating networks," Energy, Elsevier, vol. 36(7), pages 4278-4286.
    7. Zurigat, Y. H. & Ghajar, A. J. & Moretti, P. M., 1988. "Stratified thermal storage tank inlet mixing characterization," Applied Energy, Elsevier, vol. 30(2), pages 99-111.
    8. Kocijel, Lino & Mrzljak, Vedran & Glažar, Vladimir, 2020. "Numerical analysis of geometrical and process parameters influence on temperature stratification in a large volumetric heat storage tank," Energy, Elsevier, vol. 194(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lihua Cao & Jingwen Yu & Xifeng Liu & Zhanzhou Wang, 2024. "Evaluation Method and Analysis on Performance of Diffuser in Heat Storage Tank," Energies, MDPI, vol. 17(3), pages 1-15, January.
    2. Gianni Martinazzoli & Daniele Pasinelli & Adriano Maria Lezzi & Mariagrazia Pilotelli, 2023. "Design of a 5th Generation District Heating Substation Prototype for a Real Case Study," Sustainability, MDPI, vol. 15(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    3. Garnier, Celine & Muneer, Tariq & Currie, John, 2018. "Numerical and empirical evaluation of a novel building integrated collector storage solar water heater," Renewable Energy, Elsevier, vol. 126(C), pages 281-295.
    4. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    5. Böhm, Hans & Lindorfer, Johannes, 2019. "Techno-economic assessment of seasonal heat storage in district heating with thermochemical materials," Energy, Elsevier, vol. 179(C), pages 1246-1264.
    6. Xiang, Yutong & Gao, Meng & Furbo, Simon & Fan, Jianhua & Wang, Gang & Tian, Zhiyong & Wang, Dengjia, 2023. "Assessment of inlet mixing during charge and discharge of a large-scale water pit heat storage," Renewable Energy, Elsevier, vol. 217(C).
    7. Parida, Dipti Ranjan & Advaith, S. & Dani, Nikhil & Basu, Saptarshi, 2022. "Assessing the impact of a novel hemispherical diffuser on a single-tank sensible thermal energy storage system," Renewable Energy, Elsevier, vol. 183(C), pages 202-218.
    8. Guelpa, Elisa & Marincioni, Ludovica, 2019. "Demand side management in district heating systems by innovative control," Energy, Elsevier, vol. 188(C).
    9. Mahon, Harry & O'Connor, Dominic & Friedrich, Daniel & Hughes, Ben, 2022. "A review of thermal energy storage technologies for seasonal loops," Energy, Elsevier, vol. 239(PC).
    10. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    11. Chang, Chun & Wu, Zhiyong & Navarro, Helena & Li, Chuan & Leng, Guanghui & Li, Xiaoxia & Yang, Ming & Wang, Zhifeng & Ding, Yulong, 2017. "Comparative study of the transient natural convection in an underground water pit thermal storage," Applied Energy, Elsevier, vol. 208(C), pages 1162-1173.
    12. Launay, S. & Kadoch, B. & Le Métayer, O. & Parrado, C., 2019. "Analysis strategy for multi-criteria optimization: Application to inter-seasonal solar heat storage for residential building needs," Energy, Elsevier, vol. 171(C), pages 419-434.
    13. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    14. Xiaoyu Gao & Chengying Qi & Guixiang Xue & Jiancai Song & Yahui Zhang & Shi-ang Yu, 2020. "Forecasting the Heat Load of Residential Buildings with Heat Metering Based on CEEMDAN-SVR," Energies, MDPI, vol. 13(22), pages 1-19, November.
    15. María Gasque & Federico Ibáñez & Pablo González-Altozano, 2021. "Minimum Number of Experimental Data for the Thermal Characterization of a Hot Water Storage Tank," Energies, MDPI, vol. 14(16), pages 1-16, August.
    16. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
    18. Streckiene, Giedre & Martinaitis, Vytautas & Andersen, Anders N. & Katz, Jonas, 2009. "Feasibility of CHP-plants with thermal stores in the German spot market," Applied Energy, Elsevier, vol. 86(11), pages 2308-2316, November.
    19. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    20. Lei Li & Yude Wu & Yi Lu & Xiao Yang & Qiyang Wang & Xiaoai Wang & Yulin Wang, 2022. "Numerical Simulation on the Structural Design of a Multi-Pore Water Diffuser during the External Ice Melting Process of an Ice Storage System," Energies, MDPI, vol. 15(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:322:y:2022:i:c:s030626192200767x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.