IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6025821.html
   My bibliography  Save this article

Statistical Characteristics and Community Analysis of Urban Road Networks

Author

Listed:
  • Wen-Long Shang
  • Yanyan Chen
  • Huibo Bi
  • Haoran Zhang
  • Changxi Ma
  • Washington Y. Ochieng

Abstract

Urban road networks are typical complex systems, which are crucial to our society and economy. In this study, topological characteristics of a number of urban road networks purely based on physical roads rather than routes of vehicles or buses are investigated in order to discover underlying unique structural features, particularly compared to other types of transport networks. Based on these topological indices, correlations between topological indices and small-worldness of urban road networks are also explored. The finding shows that there is no significant small-worldness for urban road networks, which is apparently different from other transport networks. Following this, community detection of urban road networks is conducted. The results reveal that communities and hierarchy of urban road networks tend to follow a general nature rule.

Suggested Citation

  • Wen-Long Shang & Yanyan Chen & Huibo Bi & Haoran Zhang & Changxi Ma & Washington Y. Ochieng, 2020. "Statistical Characteristics and Community Analysis of Urban Road Networks," Complexity, Hindawi, vol. 2020, pages 1-21, September.
  • Handle: RePEc:hin:complx:6025821
    DOI: 10.1155/2020/6025821
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/6025821.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/6025821.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/6025821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Rongjian & Ding, Chuan & Gao, Jian & Wu, Xinkai & Yu, Bin, 2022. "Optimization and evaluation for autonomous taxi ride-sharing schedule and depot location from the perspective of energy consumption," Applied Energy, Elsevier, vol. 308(C).
    2. Boeing, Geoff & Ha, Jaehyun, 2024. "Resilient by design: Simulating street network disruptions across every urban area in the world," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    3. Yu, Qing & Li, Weifeng & Zhang, Haoran & Chen, Jinyu, 2022. "GPS data in taxi-sharing system: Analysis of potential demand and assessment of fuel consumption based on routing probability model," Applied Energy, Elsevier, vol. 314(C).
    4. Boeing, Geoff & Ha, Jaehyun, 2024. "Resilient by Design: Simulating Street Network Disruptions across Every Urban Area in the World," SocArXiv tk93y, Center for Open Science.
    5. Qiu, Dawei & Wang, Yi & Sun, Mingyang & Strbac, Goran, 2022. "Multi-service provision for electric vehicles in power-transportation networks towards a low-carbon transition: A hierarchical and hybrid multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 313(C).
    6. Bi, Huibo & Shang, Wen-Long & Chen, Yanyan & Wang, Kezhi & Yu, Qing & Sui, Yi, 2021. "GIS aided sustainable urban road management with a unifying queueing and neural network model," Applied Energy, Elsevier, vol. 291(C).
    7. Luo, Xi & Gao, Yaru & Liu, Xiaojun & Sun, Yongkai & Li, Na & Liu, Jianghua, 2023. "ACHRA: A novel model to study the propagation of clean heating acceptance among rural residents based on social networks," Applied Energy, Elsevier, vol. 333(C).
    8. Shang, Wen-Long & Chen, Yishui & Yu, Qing & Song, Xuewang & Chen, Yanyan & Ma, Xiaolei & Chen, Xiqun & Tan, Zhijia & Huang, Jianling & Ochieng, Washington, 2023. "Spatio-temporal analysis of carbon footprints for urban public transport systems based on smart card data," Applied Energy, Elsevier, vol. 352(C).
    9. Zhou, Junfeng & Zhang, Yanhui & Zhang, Yubo & Shang, Wen-Long & Yang, Zhile & Feng, Wei, 2022. "Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning," Applied Energy, Elsevier, vol. 314(C).
    10. Wenjing Wang & Yanyan Chen & Haodong Sun & Yusen Chen, 2021. "Multiple Binary Classification Model of Trip Chain Based on the Fusion of Internet Location Data and Transport Data," Sustainability, MDPI, vol. 13(21), pages 1-15, November.
    11. Chen, Haoqian & Sui, Yi & Shang, Wen-long & Sun, Rencheng & Chen, Zhiheng & Wang, Changying & Han, Chunjia & Zhang, Yuqian & Zhang, Haoran, 2022. "Towards renewable public transport: Mining the performance of electric buses using solar-radiation as an auxiliary power source," Applied Energy, Elsevier, vol. 325(C).
    12. Schuster, Hannah & Polleres, Axel & Wachs, Johannes, 2024. "Stress-testing road networks and access to medical care," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6025821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.