IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v313y2022ics0306261922001532.html
   My bibliography  Save this article

Roadmap to hydrogen society of Tokyo: Locating priority of hydrogen facilities based on multiple big data fusion

Author

Listed:
  • Chen, Jinyu
  • Zhang, Qiong
  • Xu, Ning
  • Li, Wenjing
  • Yao, Yuhao
  • Li, Peiran
  • Yu, Qing
  • Wen, Chuang
  • Song, Xuan
  • Shibasaki, Ryosuke
  • Zhang, Haoran

Abstract

Hydrogen socialization has become a promising target in future energy development. Hydrogen fuel cell vehicle is gradually becoming a considerable substitute for fossil fuel vehicles in many countries. As for the promotion of hydrogen fuel cell vehicles, The construction of facilities like hydrogen refueling stations and depots should be strengthened. The research provides a case study of locating the priority of the construction of hydrogenation facilities, based on policy regulation, massive GPS trajectory records, geographical land use data, road network and, POI data. The PageRank value in the complex network theory is employed to estimate the priority of the Land use Unit and policies regulation is referred to to ensure the feasibility of construction. Among 24,595 Land Use Units in sum, 59.78% of them are allowed to build hydrogen facilities. The results show that the available location of hydrogen refueling stations with high priority (we pick the first 100 for analysis) and feasibility in policy are geographically clustered around the city centers and sub-centers. The place with the highest PageRank value of 0.0033 is Haneda airport, which is an important transportation hub. The PageRank values of most of the other first 100 ranked Land Use Units are under 0.001. This indicates that the vehicle transportation network is highly centralized. There is an obvious sequence of priority of hydrogen refueling stations. We furtherly provide sensitivity analysis and it shows that higher-ranked places are spatially clustered. The best hydrogen depot is located near Tokyo Bay with the advantage of low transportation cost of liquid hydrogen, convenient transportation conditions, strong safety assurance. After verification, the results showed consistency with the current hydrogenation facility construction process and demonstrated the potential for future hydrogenation facility construction.

Suggested Citation

  • Chen, Jinyu & Zhang, Qiong & Xu, Ning & Li, Wenjing & Yao, Yuhao & Li, Peiran & Yu, Qing & Wen, Chuang & Song, Xuan & Shibasaki, Ryosuke & Zhang, Haoran, 2022. "Roadmap to hydrogen society of Tokyo: Locating priority of hydrogen facilities based on multiple big data fusion," Applied Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:appene:v:313:y:2022:i:c:s0306261922001532
    DOI: 10.1016/j.apenergy.2022.118688
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922001532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118688?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Haoran & Chen, Jinyu & Li, Wenjing & Song, Xuan & Shibasaki, Ryosuke, 2020. "Mobile phone GPS data in urban ride-sharing: An assessment method for emission reduction potential," Applied Energy, Elsevier, vol. 269(C).
    2. Hosseini, Meysam & MirHassani, S.A., 2015. "Refueling-station location problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 101-116.
    3. Guo, Fang & Yang, Jun & Lu, Jianyi, 2018. "The battery charging station location problem: Impact of users’ range anxiety and distance convenience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 1-18.
    4. Seo, Seung-Kwon & Yun, Dong-Yeol & Lee, Chul-Jin, 2020. "Design and optimization of a hydrogen supply chain using a centralized storage model," Applied Energy, Elsevier, vol. 262(C).
    5. Jeff Tollefson, 2010. "Hydrogen vehicles: Fuel of the future?," Nature, Nature, vol. 464(7293), pages 1262-1264, April.
    6. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    7. Zhang, Haoran & Song, Xuan & Long, Yin & Xia, Tianqi & Fang, Kai & Zheng, Jianqin & Huang, Dou & Shibasaki, Ryosuke & Liang, Yongtu, 2019. "Mobile phone GPS data in urban bicycle-sharing: Layout optimization and emissions reduction analysis," Applied Energy, Elsevier, vol. 242(C), pages 138-147.
    8. Li, Peilin & Zhao, Pengjun & Schwanen, Tim, 2020. "Effect of land use on shopping trips in station areas: Examining sensitivity to scale," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 969-985.
    9. Wei, Xintong & Qiu, Rui & Liang, Yongtu & Liao, Qi & Klemeš, Jiří Jaromír & Xue, Jinjun & Zhang, Haoran, 2022. "Roadmap to carbon emissions neutral industrial parks: Energy, economic and environmental analysis," Energy, Elsevier, vol. 238(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongshi Sun & Di Guo & Danlan Xie, 2023. "Using Multicriteria Decision Making to Evaluate the Risk of Hydrogen Energy Storage and Transportation in Cities," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    2. Zhang, Qiong & Chen, Jinyu & Ihara, Tomohiko, 2024. "Assessing regional variations in hydrogen fuel cell vehicle adoption: An integrative approach using real-world data and analytic hierarchy process in Tokyo," Applied Energy, Elsevier, vol. 363(C).
    3. Fang, Ming & Njangang, Henri & Padhan, Hemachandra & Simo, Colette & Yan, Cheng, 2023. "Social media and energy justice: A global evidence," Energy Economics, Elsevier, vol. 125(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    2. Yu, Qing & Li, Weifeng & Zhang, Haoran & Chen, Jinyu, 2022. "GPS data in taxi-sharing system: Analysis of potential demand and assessment of fuel consumption based on routing probability model," Applied Energy, Elsevier, vol. 314(C).
    3. Li, Lei & Al Chami, Zaher & Manier, Hervé & Manier, Marie-Ange & Xue, Jian, 2021. "Incorporating fuel delivery in network design for hydrogen fueling stations: Formulation and two metaheuristic approaches," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    4. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2019. "A four-step method for electric-vehicle charging facility deployment in a dense city: An empirical study in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 224-237.
    5. Ouyang, Xu & Xu, Min, 2022. "Promoting green transportation under the belt and Road Initiative: Locating charging stations considering electric vehicle users’ travel behavior," Transport Policy, Elsevier, vol. 116(C), pages 58-80.
    6. Kınay, Ömer Burak & Gzara, Fatma & Alumur, Sibel A., 2021. "Full cover charging station location problem with routing," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 1-22.
    7. Sungmi Bae & Eunhan Lee & Jinil Han, 2020. "Multi-Period Planning of Hydrogen Supply Network for Refuelling Hydrogen Fuel Cell Vehicles in Urban Areas," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    8. Jiwon Yu & Young Jae Han & Hyewon Yang & Sugil Lee & Gildong Kim & Chulung Lee, 2022. "Promising Technology Analysis and Patent Roadmap Development in the Hydrogen Supply Chain," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    9. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    10. Yi, Wenjing & Yan, Jie, 2020. "Energy consumption and emission influences from shared mobility in China: A national level annual data analysis," Applied Energy, Elsevier, vol. 277(C).
    11. Yang, Jie & Yu, Fan & Ma, Kai & Yang, Bo & Yue, Zhiyuan, 2024. "Optimal scheduling of electric-hydrogen integrated charging station for new energy vehicles," Renewable Energy, Elsevier, vol. 224(C).
    12. Davidov, Sreten, 2020. "Optimal charging infrastructure planning based on a charging convenience buffer," Energy, Elsevier, vol. 192(C).
    13. Carmen Fernández-Aguilar & Marta Brosed-Lázaro & Demetrio Carmona-Derqui, 2023. "Effectiveness of Mobility and Urban Sustainability Measures in Improving Citizen Health: A Scoping Review," IJERPH, MDPI, vol. 20(3), pages 1-21, February.
    14. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Ekşioğlu, Sandra D. & Castillo-Villar, Krystel K., 2021. "Designing a reliable electric vehicle charging station expansion under uncertainty," International Journal of Production Economics, Elsevier, vol. 236(C).
    15. Liu, Jianmiao & Li, Junyi & Chen, Yong & Lian, Song & Zeng, Jiaqi & Geng, Maosi & Zheng, Sijing & Dong, Yinan & He, Yan & Huang, Pei & Zhao, Zhijian & Yan, Xiaoyu & Hu, Qinru & Wang, Lei & Yang, Di & , 2023. "Multi-scale urban passenger transportation CO2 emission calculation platform for smart mobility management," Applied Energy, Elsevier, vol. 331(C).
    16. Fadda, Edoardo & Manerba, Daniele & Cabodi, Gianpiero & Camurati, Paolo Enrico & Tadei, Roberto, 2021. "Comparative analysis of models and performance indicators for optimal service facility location," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    17. Markard, Jochen & Hoffmann, Volker H., 2016. "Analysis of complementarities: Framework and examples from the energy transition," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 63-75.
    18. Emilia M. Szumska & Rafał S. Jurecki, 2021. "Parameters Influencing on Electric Vehicle Range," Energies, MDPI, vol. 14(16), pages 1-23, August.
    19. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    20. Du, Weijian & Li, Mengjie, 2023. "Opening the black box of environmental governance: Environmental target constraints and industrial firm pollution reduction," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:313:y:2022:i:c:s0306261922001532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.