IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipas0306261924020269.html
   My bibliography  Save this article

Asymptotic analytical solution for the temperature evolution in internally-heated packed-bed tanks for high-temperature solid-air energy storage

Author

Listed:
  • Martín-Alcántara, A.
  • Fernandez-Feria, R.

Abstract

Unidirectional flow equations through a porous medium with a localized heat source are used to model the fluid and solid temperatures in a packed-bed, internally-heated thermal energy storage (IH-TES) unit. Numerical results in absence of the heat source term are used to validate the model equations against experimental data from TES units available in the literature. An analytical approximate solution of the equations is obtained via perturbation methods. This solution is used to derive useful relations for the design and operation of IH-TES systems. The presence of the internal heat source substantially modifies the operational scales and the qualitative behavior of the system in relation to previous results on TES units. Practical recommendations to improve the design and operation of the IH-TES system resulting from the analytical solution are provided. For instance, it is found that the heat source must be located at about three-quarters of the packed-bed length for optimal performance, with a very small thickness, proportional to the solid thermal conductivity and inversely proportional to the fluid velocity and the volumetric heat capacity of the gas. Also that a high porosity is recommendable to decrease the heating time.

Suggested Citation

  • Martín-Alcántara, A. & Fernandez-Feria, R., 2025. "Asymptotic analytical solution for the temperature evolution in internally-heated packed-bed tanks for high-temperature solid-air energy storage," Applied Energy, Elsevier, vol. 377(PA).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924020269
    DOI: 10.1016/j.apenergy.2024.124643
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Hao & Li, Rui & Ling, Xiang & Dong, Huihua, 2015. "Modeling on heat storage performance of compressed air in a packed bed system," Applied Energy, Elsevier, vol. 160(C), pages 1-9.
    2. Stack, Daniel C. & Curtis, Daniel & Forsberg, Charles, 2019. "Performance of firebrick resistance-heated energy storage for industrial heat applications and round-trip electricity storage," Applied Energy, Elsevier, vol. 242(C), pages 782-796.
    3. Dutil, Yvan & Rousse, Daniel R. & Salah, Nizar Ben & Lassue, Stéphane & Zalewski, Laurent, 2011. "A review on phase-change materials: Mathematical modeling and simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 112-130, January.
    4. Ortega-Fernández, Iñigo & Calvet, Nicolas & Gil, Antoni & Rodríguez-Aseguinolaza, Javier & Faik, Abdessamad & D'Aguanno, Bruno, 2015. "Thermophysical characterization of a by-product from the steel industry to be used as a sustainable and low-cost thermal energy storage material," Energy, Elsevier, vol. 89(C), pages 601-609.
    5. Esence, Thibaut & Desrues, Tristan & Fourmigué, Jean-François & Cwicklinski, Grégory & Bruch, Arnaud & Stutz, Benoit, 2019. "Experimental study and numerical modelling of high temperature gas/solid packed-bed heat storage systems," Energy, Elsevier, vol. 180(C), pages 61-78.
    6. Trevisan, Silvia & Wang, Wujun & Guedez, Rafael & Laumert, Björn, 2022. "Experimental evaluation of an innovative radial-flow high-temperature packed bed thermal energy storage," Applied Energy, Elsevier, vol. 311(C).
    7. Singh, Harmeet & Saini, R.P. & Saini, J.S., 2010. "A review on packed bed solar energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1059-1069, April.
    8. Xu, Chao & Wang, Zhifeng & He, Yaling & Li, Xin & Bai, Fengwu, 2012. "Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system," Applied Energy, Elsevier, vol. 92(C), pages 65-75.
    9. Elfeky, Karem Elsayed & Mohammed, Abubakar Gambo & Ahmed, Naveed & Wang, Qiuwang, 2023. "Thermo-mechanical investigation of the multi-layer thermocline tank for parabolic trough power plants," Energy, Elsevier, vol. 268(C).
    10. Flueckiger, Scott M. & Iverson, Brian D. & Garimella, Suresh V. & Pacheco, James E., 2014. "System-level simulation of a solar power tower plant with thermocline thermal energy storage," Applied Energy, Elsevier, vol. 113(C), pages 86-96.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortega-Fernández, Iñigo & Hernández, Ana Belén & Wang, Yang & Bielsa, Daniel, 2021. "Performance assessment of an oil-based packed bed thermal energy storage unit in a demonstration concentrated solar power plant," Energy, Elsevier, vol. 217(C).
    2. Calderón-Vásquez, Ignacio & Cortés, Eduardo & García, Jesús & Segovia, Valentina & Caroca, Alejandro & Sarmiento, Cristóbal & Barraza, Rodrigo & Cardemil, José M., 2021. "Review on modeling approaches for packed-bed thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2017. "Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 195(C), pages 761-773.
    4. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    5. Mao, Qianjun & Zhang, Yamei, 2020. "Thermal energy storage performance of a three-PCM cascade tank in a high-temperature packed bed system," Renewable Energy, Elsevier, vol. 152(C), pages 110-119.
    6. Tehrani, S. Saeed Mostafavi & Taylor, Robert A. & Saberi, Pouya & Diarce, Gonzalo, 2016. "Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants," Renewable Energy, Elsevier, vol. 96(PA), pages 120-136.
    7. Ma, Zhao & Li, Ming-Jia & Zhang, K. Max & Yuan, Fan, 2021. "Novel designs of hybrid thermal energy storage system and operation strategies for concentrated solar power plant," Energy, Elsevier, vol. 216(C).
    8. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Hoffmann, J.-F., 2018. "A temperature threshold evaluation for thermocline energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 212(C), pages 1153-1164.
    9. Ortega-Fernández, Iñigo & Rodríguez-Aseguinolaza, Javier, 2019. "Thermal energy storage for waste heat recovery in the steelworks: The case study of the REslag project," Applied Energy, Elsevier, vol. 237(C), pages 708-719.
    10. Xie, Baoshan & Baudin, Nicolas & Soto, Jérôme & Fan, Yilin & Luo, Lingai, 2022. "Wall impact on efficiency of packed-bed thermocline thermal energy storage system," Energy, Elsevier, vol. 247(C).
    11. ELSihy, ELSaeed Saad & Mokhtar, Omar & Xu, Chao & Du, Xiaoze & Adel, Mohamed, 2023. "Cyclic performance characterization of a high-temperature thermal energy storage system packed with rock/slag pebbles granules combined with encapsulated phase change materials," Applied Energy, Elsevier, vol. 331(C).
    12. Filali Baba, Yousra & Al Mers, Ahmed & Ajdad, Hamid, 2020. "Dimensionless model based on dual phase approach for predicting thermal performance of thermocline energy storage system: Towards a new approach for thermocline thermal optimization," Renewable Energy, Elsevier, vol. 153(C), pages 440-455.
    13. Li, C. & Wang, R.Z., 2012. "Building integrated energy storage opportunities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6191-6211.
    14. Zhang, Maolong & Xu, Chao & Du, Xiaoze & Amjad, Muhammad & Wen, Dongsheng, 2017. "Off-design performance of concentrated solar heat and coal double-source boiler power generation with thermocline energy storage," Applied Energy, Elsevier, vol. 189(C), pages 697-710.
    15. Galione, P.A. & Pérez-Segarra, C.D. & Rodríguez, I. & Oliva, A. & Rigola, J., 2015. "Multi-layered solid-PCM thermocline thermal storage concept for CSP plants. Numerical analysis and perspectives," Applied Energy, Elsevier, vol. 142(C), pages 337-351.
    16. ELSihy, ELSaeed Saad & Cai, Changrui & Li, Zhenpeng & Du, Xiaoze & Wang, Zuyuan, 2024. "Performance investigation on the cascaded packed bed thermal energy storage system with encapsulated nano-enhanced phase change materials for high-temperature applications," Energy, Elsevier, vol. 293(C).
    17. Flueckiger, Scott M. & Garimella, Suresh V., 2014. "Latent heat augmentation of thermocline energy storage for concentrating solar power – A system-level assessment," Applied Energy, Elsevier, vol. 116(C), pages 278-287.
    18. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2018. "System-level performance optimization of molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 226(C), pages 225-239.
    19. Forsberg, Charles, 2023. "Low-cost crushed-rock heat storage with oil or salt heat transfer," Applied Energy, Elsevier, vol. 335(C).
    20. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2016. "Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants," Applied Energy, Elsevier, vol. 178(C), pages 784-799.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924020269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.