IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v310y2022ics0306261921016937.html
   My bibliography  Save this article

3D-PV-Locator: Large-scale detection of rooftop-mounted photovoltaic systems in 3D

Author

Listed:
  • Mayer, Kevin
  • Rausch, Benjamin
  • Arlt, Marie-Louise
  • Gust, Gunther
  • Wang, Zhecheng
  • Neumann, Dirk
  • Rajagopal, Ram

Abstract

While photovoltaic (PV) systems are being installed at an unprecedented rate, it is challenging to keep track of them due to their decentralized character and large number. In this paper, we present the 3D-PV-Locator for large-scale detection of roof-mounted PV systems in three dimensions (3D). The 3D-PV-Locator combines information extracted from aerial images and 3D building data by means of deep neural networks for image classification and segmentation, as well as 3D spatial data processing techniques. It thereby extends existing approaches for the automated detection of PV systems from aerial images by also providing their azimuth and tilt angles. We evaluate the 3D-PV-Locator using a large dataset gathered from the official German PV registry in a real-world study with more than one million buildings. In terms of azimuth and tilt angles, our evaluation shows that the 3D-PV-Locator and the official registry coincide for about two thirds of the observations and are within neighboring classes for 84 and 99 percent of the observations, respectively. In terms of detected PV system capacity, we show that the 3D-PV-Locator clearly outperforms existing approaches. It performs particularly well for the groups of small and medium-sized PV systems (3.6–33.1 percent error reduction) and PV systems tilted beyond 40° (25.6–38.1 percent error reduction). The 3D PV system data generated by the 3D-PV-Locator can inform several practical applications, such as improved forecasting of solar generation, the optimized planning and operation of distribution networks, improved integration of electric vehicles, and others. All datasets and pre-trained models associated with this paper are available online.

Suggested Citation

  • Mayer, Kevin & Rausch, Benjamin & Arlt, Marie-Louise & Gust, Gunther & Wang, Zhecheng & Neumann, Dirk & Rajagopal, Ram, 2022. "3D-PV-Locator: Large-scale detection of rooftop-mounted photovoltaic systems in 3D," Applied Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261921016937
    DOI: 10.1016/j.apenergy.2021.118469
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921016937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118469?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosenfelder, Markus & Wussow, Moritz & Gust, Gunther & Cremades, Roger & Neumann, Dirk, 2021. "Predicting residential electricity consumption using aerial and street view images," Applied Energy, Elsevier, vol. 301(C).
    2. Edun, Ayobami S. & Perry, Kirsten & Harley, Joel B. & Deline, Chris, 2021. "Unsupervised azimuth estimation of solar arrays in low-resolution satellite imagery through semantic segmentation and Hough transform," Applied Energy, Elsevier, vol. 298(C).
    3. Haghdadi, Navid & Copper, Jessie & Bruce, Anna & MacGill, Iain, 2017. "A method to estimate the location and orientation of distributed photovoltaic systems from their generation output data," Renewable Energy, Elsevier, vol. 108(C), pages 390-400.
    4. Malof, Jordan M. & Bradbury, Kyle & Collins, Leslie M. & Newell, Richard G., 2016. "Automatic detection of solar photovoltaic arrays in high resolution aerial imagery," Applied Energy, Elsevier, vol. 183(C), pages 229-240.
    5. Gust, Gunther & Brandt, Tobias & Mashayekh, Salman & Heleno, Miguel & DeForest, Nicholas & Stadler, Michael & Neumann, Dirk, 2021. "Strategies for microgrid operation under real-world conditions," European Journal of Operational Research, Elsevier, vol. 292(1), pages 339-352.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    2. Hu, Wei & Bradbury, Kyle & Malof, Jordan M. & Li, Boning & Huang, Bohao & Streltsov, Artem & Sydny Fujita, K. & Hoen, Ben, 2022. "What you get is not always what you see—pitfalls in solar array assessment using overhead imagery," Applied Energy, Elsevier, vol. 327(C).
    3. Zech, Matthias & von Bremen, Lueder, 2024. "End-to-end learning of representative PV capacity factors from aggregated PV feed-ins," Applied Energy, Elsevier, vol. 361(C).
    4. Justinas Lekavičius & Valentas Gružauskas, 2024. "Data Augmentation with Generative Adversarial Network for Solar Panel Segmentation from Remote Sensing Images," Energies, MDPI, vol. 17(13), pages 1-20, June.
    5. Mayer, Kevin & Haas, Lukas & Huang, Tianyuan & Bernabé-Moreno, Juan & Rajagopal, Ram & Fischer, Martin, 2023. "Estimating building energy efficiency from street view imagery, aerial imagery, and land surface temperature data," Applied Energy, Elsevier, vol. 333(C).
    6. Fabio Giussani & Eric Wilczynski & Claudio Zandonella Callegher & Giovanni Dalle Nogare & Cristian Pozza & Antonio Novelli & Simon Pezzutto, 2024. "Use of Machine Learning Techniques on Aerial Imagery for the Extraction of Photovoltaic Data within the Urban Morphology," Sustainability, MDPI, vol. 16(5), pages 1-16, February.
    7. Gabriel Kasmi & Augustin Touron & Philippe Blanc & Yves-Marie Saint-Drenan & Maxime Fortin & Laurent Dubus, 2024. "Remote-Sensing-Based Estimation of Rooftop Photovoltaic Power Production Using Physical Conversion Models and Weather Data," Energies, MDPI, vol. 17(17), pages 1-23, August.
    8. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    3. Lu, Ning & Li, Liang & Qin, Jun, 2024. "PV Identifier: Extraction of small-scale distributed photovoltaics in complex environments from high spatial resolution remote sensing images," Applied Energy, Elsevier, vol. 365(C).
    4. Edun, Ayobami S. & Perry, Kirsten & Harley, Joel B. & Deline, Chris, 2021. "Unsupervised azimuth estimation of solar arrays in low-resolution satellite imagery through semantic segmentation and Hough transform," Applied Energy, Elsevier, vol. 298(C).
    5. Konstantinos Ioannou & Dimitrios Myronidis, 2021. "Automatic Detection of Photovoltaic Farms Using Satellite Imagery and Convolutional Neural Networks," Sustainability, MDPI, vol. 13(9), pages 1-15, May.
    6. Mohammad K. Najjar & Eduardo Linhares Qualharini & Ahmed W. A. Hammad & Dieter Boer & Assed Haddad, 2019. "Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    7. Rosenfelder, Markus & Wussow, Moritz & Gust, Gunther & Cremades, Roger & Neumann, Dirk, 2021. "Predicting residential electricity consumption using aerial and street view images," Applied Energy, Elsevier, vol. 301(C).
    8. Fabio Giussani & Eric Wilczynski & Claudio Zandonella Callegher & Giovanni Dalle Nogare & Cristian Pozza & Antonio Novelli & Simon Pezzutto, 2024. "Use of Machine Learning Techniques on Aerial Imagery for the Extraction of Photovoltaic Data within the Urban Morphology," Sustainability, MDPI, vol. 16(5), pages 1-16, February.
    9. Houben, Nikolaus & Cosic, Armin & Stadler, Michael & Mansoor, Muhammad & Zellinger, Michael & Auer, Hans & Ajanovic, Amela & Haas, Reinhard, 2023. "Optimal dispatch of a multi-energy system microgrid under uncertainty: A renewable energy community in Austria," Applied Energy, Elsevier, vol. 337(C).
    10. Slavomir Labant & Patrik Petovsky & Pavel Sustek & Lubomir Leicher, 2024. "Accuracy of Determination of Corresponding Points from Available Providers of Spatial Data—A Case Study from Slovakia," Land, MDPI, vol. 13(6), pages 1-18, June.
    11. Juan-Pablo Villegas-Ceballos & Mateo Rico-Garcia & Carlos Andres Ramos-Paja, 2022. "Dataset for Detecting the Electrical Behavior of Photovoltaic Panels from RGB Images," Data, MDPI, vol. 7(6), pages 1-12, June.
    12. Yin, Hui & Zhou, Kaile, 2022. "Performance evaluation of China's photovoltaic poverty alleviation project using machine learning and satellite images," Utilities Policy, Elsevier, vol. 76(C).
    13. Rodrigues, Stefane Dias & Garcia, Vinicius Jacques, 2023. "Transactive energy in microgrid communities: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    14. Li, Binghui & Feng, Cong & Siebenschuh, Carlo & Zhang, Rui & Spyrou, Evangelia & Krishnan, Venkat & Hobbs, Benjamin F. & Zhang, Jie, 2022. "Sizing ramping reserve using probabilistic solar forecasts: A data-driven method," Applied Energy, Elsevier, vol. 313(C).
    15. Hu, Wei & Bradbury, Kyle & Malof, Jordan M. & Li, Boning & Huang, Bohao & Streltsov, Artem & Sydny Fujita, K. & Hoen, Ben, 2022. "What you get is not always what you see—pitfalls in solar array assessment using overhead imagery," Applied Energy, Elsevier, vol. 327(C).
    16. Marcus Vinícius Coelho Vieira da Costa & Osmar Luiz Ferreira de Carvalho & Alex Gois Orlandi & Issao Hirata & Anesmar Olino de Albuquerque & Felipe Vilarinho e Silva & Renato Fontes Guimarães & Robert, 2021. "Remote Sensing for Monitoring Photovoltaic Solar Plants in Brazil Using Deep Semantic Segmentation," Energies, MDPI, vol. 14(10), pages 1-15, May.
    17. Daxini, Rajiv & Wilson, Robin & Wu, Yupeng, 2023. "Modelling the spectral influence on photovoltaic device performance using the average photon energy and the depth of a water absorption band for improved forecasting," Energy, Elsevier, vol. 284(C).
    18. Yongshi Jie & Xianhua Ji & Anzhi Yue & Jingbo Chen & Yupeng Deng & Jing Chen & Yi Zhang, 2020. "Combined Multi-Layer Feature Fusion and Edge Detection Method for Distributed Photovoltaic Power Station Identification," Energies, MDPI, vol. 13(24), pages 1-19, December.
    19. Brester, Christina & Kallio-Myers, Viivi & Lindfors, Anders V. & Kolehmainen, Mikko & Niska, Harri, 2023. "Evaluating neural network models in site-specific solar PV forecasting using numerical weather prediction data and weather observations," Renewable Energy, Elsevier, vol. 207(C), pages 266-274.
    20. Fei Wang & Kangping Li & Xinkang Wang & Lihui Jiang & Jianguo Ren & Zengqiang Mi & Miadreza Shafie-khah & João P. S. Catalão, 2018. "A Distributed PV System Capacity Estimation Approach Based on Support Vector Machine with Customer Net Load Curve Features," Energies, MDPI, vol. 11(7), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261921016937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.