IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4353-d1468155.html
   My bibliography  Save this article

Remote-Sensing-Based Estimation of Rooftop Photovoltaic Power Production Using Physical Conversion Models and Weather Data

Author

Listed:
  • Gabriel Kasmi

    (MINES Paris, Université PSL Centre Observation Impacts Energie (O.I.E.), 06904 Sophia-Antipolis, France
    Direction de la Recherche et du Développement, RTE France, 92073 Paris La Défense, France)

  • Augustin Touron

    (Direction de la Recherche et du Développement, RTE France, 92073 Paris La Défense, France)

  • Philippe Blanc

    (MINES Paris, Université PSL Centre Observation Impacts Energie (O.I.E.), 06904 Sophia-Antipolis, France)

  • Yves-Marie Saint-Drenan

    (MINES Paris, Université PSL Centre Observation Impacts Energie (O.I.E.), 06904 Sophia-Antipolis, France)

  • Maxime Fortin

    (Direction de la Recherche et du Développement, RTE France, 92073 Paris La Défense, France)

  • Laurent Dubus

    (Direction de la Recherche et du Développement, RTE France, 92073 Paris La Défense, France
    WEMC (World Energy & Meteorology Council), Norwich NR4 7TJ, UK)

Abstract

The global photovoltaic (PV) installed capacity, vital for the electric sector’s decarbonation, reached 1552.3 GW p in 2023. In France, the capacity stood at 19.9 GW p in April 2024. The growth of the PV installed capacity over a year was nearly 32% worldwide and 15.7% in France. However, integrating PV electricity into grids is hindered by poor knowledge of rooftop PV systems, constituting 20% of France’s installed capacity, and the lack of measurements of the production stemming from these systems. This problem of lack of measurements of the rooftop PV power production is referred to as the lack of observability. Using ground-truth measurements of individual PV systems, available at an unprecedented temporal and spatial scale, we show that by estimating the PV power production of an individual rooftop system by combining solar irradiance and temperature data, the characteristics of the PV system inferred from remote sensing methods and an irradiation-to-electric power conversion model provides accurate estimations of the PV power production. We report an average estimation error (measured with the pRMSE) of 10% relative to the system size. Our study shows that we can improve rooftop PV observability, and thus its integration into the electric grid, using little information on these systems, a simple model of the PV system, and weather data. More broadly, this study shows that limited information is sufficient to derive a reasonably good estimation of the PV power production of small-scale systems.

Suggested Citation

  • Gabriel Kasmi & Augustin Touron & Philippe Blanc & Yves-Marie Saint-Drenan & Maxime Fortin & Laurent Dubus, 2024. "Remote-Sensing-Based Estimation of Rooftop Photovoltaic Power Production Using Physical Conversion Models and Weather Data," Energies, MDPI, vol. 17(17), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4353-:d:1468155
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4353/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4353/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mayer, Kevin & Rausch, Benjamin & Arlt, Marie-Louise & Gust, Gunther & Wang, Zhecheng & Neumann, Dirk & Rajagopal, Ram, 2022. "3D-PV-Locator: Large-scale detection of rooftop-mounted photovoltaic systems in 3D," Applied Energy, Elsevier, vol. 310(C).
    2. Malof, Jordan M. & Bradbury, Kyle & Collins, Leslie M. & Newell, Richard G., 2016. "Automatic detection of solar photovoltaic arrays in high resolution aerial imagery," Applied Energy, Elsevier, vol. 183(C), pages 229-240.
    3. Yang, Ruiqing & He, Guojin & Yin, Ranyu & Wang, Guizhou & Zhang, Zhaoming & Long, Tengfei & Peng, Yan, 2024. "Weakly-semi supervised extraction of rooftop photovoltaics from high-resolution images based on segment anything model and class activation map," Applied Energy, Elsevier, vol. 361(C).
    4. Walch, Alina & Castello, Roberto & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2020. "Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty," Applied Energy, Elsevier, vol. 262(C).
    5. Lu, Ning & Li, Liang & Qin, Jun, 2024. "PV Identifier: Extraction of small-scale distributed photovoltaics in complex environments from high spatial resolution remote sensing images," Applied Energy, Elsevier, vol. 365(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
    3. Fabio Giussani & Eric Wilczynski & Claudio Zandonella Callegher & Giovanni Dalle Nogare & Cristian Pozza & Antonio Novelli & Simon Pezzutto, 2024. "Use of Machine Learning Techniques on Aerial Imagery for the Extraction of Photovoltaic Data within the Urban Morphology," Sustainability, MDPI, vol. 16(5), pages 1-16, February.
    4. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    5. Justinas Lekavičius & Valentas Gružauskas, 2024. "Data Augmentation with Generative Adversarial Network for Solar Panel Segmentation from Remote Sensing Images," Energies, MDPI, vol. 17(13), pages 1-20, June.
    6. Hu, Wei & Bradbury, Kyle & Malof, Jordan M. & Li, Boning & Huang, Bohao & Streltsov, Artem & Sydny Fujita, K. & Hoen, Ben, 2022. "What you get is not always what you see—pitfalls in solar array assessment using overhead imagery," Applied Energy, Elsevier, vol. 327(C).
    7. Isaac Gallardo & Daniel Amor & Álvaro Gutiérrez, 2023. "Recent Trends in Real-Time Photovoltaic Prediction Systems," Energies, MDPI, vol. 16(15), pages 1-17, July.
    8. Lonergan, Katherine Emma & Sansavini, Giovanni, 2022. "Business structure of electricity distribution system operator and effect on solar photovoltaic uptake: An empirical case study for Switzerland," Energy Policy, Elsevier, vol. 160(C).
    9. Konstantinos Ioannou & Dimitrios Myronidis, 2021. "Automatic Detection of Photovoltaic Farms Using Satellite Imagery and Convolutional Neural Networks," Sustainability, MDPI, vol. 13(9), pages 1-15, May.
    10. Zech, Matthias & von Bremen, Lueder, 2024. "End-to-end learning of representative PV capacity factors from aggregated PV feed-ins," Applied Energy, Elsevier, vol. 361(C).
    11. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    12. Carlos Beltran-Velamazan & Marta Monzón-Chavarrías & Belinda López-Mesa, 2021. "A Method for the Automated Construction of 3D Models of Cities and Neighborhoods from Official Cadaster Data for Solar Analysis," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    13. Yagli, Gokhan Mert & Yang, Dazhi & Gandhi, Oktoviano & Srinivasan, Dipti, 2020. "Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance?," Applied Energy, Elsevier, vol. 259(C).
    14. Paulius Kozlovas & Saulius Gudzius & Jokubas Ciurlionis & Audrius Jonaitis & Inga Konstantinaviciute & Viktorija Bobinaite, 2023. "Assessment of Technical and Economic Potential of Urban Rooftop Solar Photovoltaic Systems in Lithuania," Energies, MDPI, vol. 16(14), pages 1-29, July.
    15. Wang, Sen & Qin, Chaoxu & Feng, Qihong & Javadpour, Farzam & Rui, Zhenhua, 2021. "A framework for predicting the production performance of unconventional resources using deep learning," Applied Energy, Elsevier, vol. 295(C).
    16. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    17. García-Afonso, Óscar & González-Díaz, Benjamín, 2023. "Effectiveness of zero tailpipe vehicles to reduce CO2 emissions in isolated power systems, a realistic perspective: Tenerife Island test case," Energy, Elsevier, vol. 273(C).
    18. Sredenšek, Klemen & Štumberger, Bojan & Hadžiselimović, Miralem & Mavsar, Primož & Seme, Sebastijan, 2022. "Physical, geographical, technical, and economic potential for the optimal configuration of photovoltaic systems using a digital surface model and optimization method," Energy, Elsevier, vol. 242(C).
    19. Job Taminiau & John Byrne & Jongkyu Kim & Min‐Hwi Kim & Jeongseok Seo, 2022. "Inferential‐ and measurement‐based methods to estimate rooftop “solar city” potential in megacity Seoul, South Korea," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(5), September.
    20. Marcela Bindzarova Gergelova & Slavomir Labant & Stefan Kuzevic & Zofia Kuzevicova & Henrieta Pavolova, 2020. "Identification of Roof Surfaces from LiDAR Cloud Points by GIS Tools: A Case Study of Lučenec, Slovakia," Sustainability, MDPI, vol. 12(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4353-:d:1468155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.