Remote-Sensing-Based Estimation of Rooftop Photovoltaic Power Production Using Physical Conversion Models and Weather Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Walch, Alina & Castello, Roberto & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2020. "Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty," Applied Energy, Elsevier, vol. 262(C).
- Lu, Ning & Li, Liang & Qin, Jun, 2024. "PV Identifier: Extraction of small-scale distributed photovoltaics in complex environments from high spatial resolution remote sensing images," Applied Energy, Elsevier, vol. 365(C).
- Mayer, Kevin & Rausch, Benjamin & Arlt, Marie-Louise & Gust, Gunther & Wang, Zhecheng & Neumann, Dirk & Rajagopal, Ram, 2022. "3D-PV-Locator: Large-scale detection of rooftop-mounted photovoltaic systems in 3D," Applied Energy, Elsevier, vol. 310(C).
- Malof, Jordan M. & Bradbury, Kyle & Collins, Leslie M. & Newell, Richard G., 2016. "Automatic detection of solar photovoltaic arrays in high resolution aerial imagery," Applied Energy, Elsevier, vol. 183(C), pages 229-240.
- Yang, Ruiqing & He, Guojin & Yin, Ranyu & Wang, Guizhou & Zhang, Zhaoming & Long, Tengfei & Peng, Yan, 2024. "Weakly-semi supervised extraction of rooftop photovoltaics from high-resolution images based on segment anything model and class activation map," Applied Energy, Elsevier, vol. 361(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
- Fabio Giussani & Eric Wilczynski & Claudio Zandonella Callegher & Giovanni Dalle Nogare & Cristian Pozza & Antonio Novelli & Simon Pezzutto, 2024. "Use of Machine Learning Techniques on Aerial Imagery for the Extraction of Photovoltaic Data within the Urban Morphology," Sustainability, MDPI, vol. 16(5), pages 1-16, February.
- Hu, Wei & Bradbury, Kyle & Malof, Jordan M. & Li, Boning & Huang, Bohao & Streltsov, Artem & Sydny Fujita, K. & Hoen, Ben, 2022. "What you get is not always what you see—pitfalls in solar array assessment using overhead imagery," Applied Energy, Elsevier, vol. 327(C).
- Lodhi, Muhammad Kamran & Tan, Yumin & Wang, Xiaolu & Masum, Syed Muhammad & Nouman, Khan Muhammad & Ullah, Nasim, 2024. "Harnessing rooftop solar photovoltaic potential in Islamabad, Pakistan: A remote sensing and deep learning approach," Energy, Elsevier, vol. 304(C).
- Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
- Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
- Justinas Lekavičius & Valentas Gružauskas, 2024. "Data Augmentation with Generative Adversarial Network for Solar Panel Segmentation from Remote Sensing Images," Energies, MDPI, vol. 17(13), pages 1-20, June.
- Isaac Gallardo & Daniel Amor & Álvaro Gutiérrez, 2023. "Recent Trends in Real-Time Photovoltaic Prediction Systems," Energies, MDPI, vol. 16(15), pages 1-17, July.
- Konstantinos Ioannou & Dimitrios Myronidis, 2021. "Automatic Detection of Photovoltaic Farms Using Satellite Imagery and Convolutional Neural Networks," Sustainability, MDPI, vol. 13(9), pages 1-15, May.
- Zech, Matthias & von Bremen, Lueder, 2024. "End-to-end learning of representative PV capacity factors from aggregated PV feed-ins," Applied Energy, Elsevier, vol. 361(C).
- Wang, Sen & Qin, Chaoxu & Feng, Qihong & Javadpour, Farzam & Rui, Zhenhua, 2021. "A framework for predicting the production performance of unconventional resources using deep learning," Applied Energy, Elsevier, vol. 295(C).
- Thebault, Martin & Desthieux, Gilles & Castello, Roberto & Berrah, Lamia, 2022. "Large-scale evaluation of the suitability of buildings for photovoltaic integration: Case study in Greater Geneva," Applied Energy, Elsevier, vol. 316(C).
- Rüdisüli, Martin & Bach, Christian & Bauer, Christian & Beloin-Saint-Pierre, Didier & Elber, Urs & Georges, Gil & Limpach, Robert & Pareschi, Giacomo & Kannan, Ramachandran & Teske, Sinan L., 2022. "Prospective life-cycle assessment of greenhouse gas emissions of electricity-based mobility options," Applied Energy, Elsevier, vol. 306(PB).
- Slavomir Labant & Patrik Petovsky & Pavel Sustek & Lubomir Leicher, 2024. "Accuracy of Determination of Corresponding Points from Available Providers of Spatial Data—A Case Study from Slovakia," Land, MDPI, vol. 13(6), pages 1-18, June.
- Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
- Mayer, Kevin & Rausch, Benjamin & Arlt, Marie-Louise & Gust, Gunther & Wang, Zhecheng & Neumann, Dirk & Rajagopal, Ram, 2022. "3D-PV-Locator: Large-scale detection of rooftop-mounted photovoltaic systems in 3D," Applied Energy, Elsevier, vol. 310(C).
- Juan-Pablo Villegas-Ceballos & Mateo Rico-Garcia & Carlos Andres Ramos-Paja, 2022. "Dataset for Detecting the Electrical Behavior of Photovoltaic Panels from RGB Images," Data, MDPI, vol. 7(6), pages 1-12, June.
- Yin, Hui & Zhou, Kaile, 2022. "Performance evaluation of China's photovoltaic poverty alleviation project using machine learning and satellite images," Utilities Policy, Elsevier, vol. 76(C).
- Sebastian Krapf & Nils Kemmerzell & Syed Khawaja Haseeb Uddin & Manuel Hack Vázquez & Fabian Netzler & Markus Lienkamp, 2021. "Towards Scalable Economic Photovoltaic Potential Analysis Using Aerial Images and Deep Learning," Energies, MDPI, vol. 14(13), pages 1-22, June.
- Li, Binghui & Feng, Cong & Siebenschuh, Carlo & Zhang, Rui & Spyrou, Evangelia & Krishnan, Venkat & Hobbs, Benjamin F. & Zhang, Jie, 2022. "Sizing ramping reserve using probabilistic solar forecasts: A data-driven method," Applied Energy, Elsevier, vol. 313(C).
More about this item
Keywords
photovoltaic energy; PV power estimation; rooftop PV; remote sensing; conversion model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4353-:d:1468155. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.