IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v309y2022ics0306261921016494.html
   My bibliography  Save this article

Day-ahead complex power scheduling in a reconfigurable hybrid-energy islanded microgrid with responsive demand considering uncertainty and different load models

Author

Listed:
  • Elgamal, M.
  • Korovkin, Nikolay
  • Abdel Menaem, A.
  • Elmitwally, Akram

Abstract

This paper proposes a new operation management scheme (OMS) for next-day complex power scheduling in an islanded reconfigurable microgrid. Energy supply in the microgrid comes from wind turbines and photovoltaic generators as renewable dispersed generators (RDG). Meanwhile, there are two microturbine units and a fuel cell unit as dispatchable distributed generators (DDG). Also, a battery bank energy storage system (BESS) is integrated. The microgrid has a number of controllable tie-switches to change the microgrid configuration and supplies residential, commercial, and industrial loads with different electrical models. Some of loads participate in a demand control program. The OMS is mathematically formulated as a multi-period mixed-integer stochastic nonlinear optimization. It has to decide the hourly power share of each DDG, the states of the control switches, and specifications of demand response. The OMS aims to minimize the total operation cost, unmet load, and curtailed renewable power maintaining all technical constraints. The uncertainty of renewable resources and load is analyzed in the OMS by Monte-Carlo simulation while scenario-reduction approach is used to reduce the computational burden. Besides, a new version of bat algorithm (IBA) is developed as a robust optimization solver. Simulation results and comparative evaluation of the OMS are presented using a 45-bus case study system to prove the merits of the method.

Suggested Citation

  • Elgamal, M. & Korovkin, Nikolay & Abdel Menaem, A. & Elmitwally, Akram, 2022. "Day-ahead complex power scheduling in a reconfigurable hybrid-energy islanded microgrid with responsive demand considering uncertainty and different load models," Applied Energy, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016494
    DOI: 10.1016/j.apenergy.2021.118416
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921016494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118416?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borhanazad, Hanieh & Mekhilef, Saad & Gounder Ganapathy, Velappa & Modiri-Delshad, Mostafa & Mirtaheri, Ali, 2014. "Optimization of micro-grid system using MOPSO," Renewable Energy, Elsevier, vol. 71(C), pages 295-306.
    2. Saboori, Hedayat & Hemmati, Reza, 2017. "Maximizing DISCO profit in active distribution networks by optimal planning of energy storage systems and distributed generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 365-372.
    3. Jiayu Cheng & Dongliang Duan & Xiang Cheng & Liuqing Yang & Shuguang Cui, 2020. "Probabilistic Microgrid Energy Management with Interval Predictions," Energies, MDPI, vol. 13(12), pages 1-23, June.
    4. Muhammad Sufyan & Nasrudin Abd Rahim & ChiaKwang Tan & Munir Azam Muhammad & Siti Rohani Sheikh Raihan, 2019. "Optimal sizing and energy scheduling of isolated microgrid considering the battery lifetime degradation," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-28, February.
    5. Kim, Tae Hyun & Shin, Hansol & Kwag, Kyuhyeong & Kim, Wook, 2020. "A parallel multi-period optimal scheduling algorithm in microgrids with energy storage systems using decomposed inter-temporal constraints," Energy, Elsevier, vol. 202(C).
    6. Kayal, Partha & Chanda, C.K., 2015. "Optimal mix of solar and wind distributed generations considering performance improvement of electrical distribution network," Renewable Energy, Elsevier, vol. 75(C), pages 173-186.
    7. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2016. "Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage," Applied Energy, Elsevier, vol. 163(C), pages 93-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Liangliang & Peng, Jiayu & Dinçer, Hasan & Yüksel, Serhat, 2022. "Coalition-oriented strategic selection of renewable energy system alternatives using q-ROF DEMATEL with golden cut," Energy, Elsevier, vol. 256(C).
    2. Kumar, Abhishek & Deng, Yan & He, Xiangning & Singh, Arvind R. & Kumar, Praveen & Bansal, R.C. & Bettayeb, M. & Ghenai, C. & Naidoo, R.M., 2023. "Impact of demand side management approaches for the enhancement of voltage stability loadability and customer satisfaction index," Applied Energy, Elsevier, vol. 339(C).
    3. Monir Sadat AlDavood & Abolfazl Mehbodniya & Julian L. Webber & Mohammad Ensaf & Mahdi Azimian, 2022. "Robust Optimization-Based Optimal Operation of Islanded Microgrid Considering Demand Response," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    4. Zou, Bin & Peng, Jinqing & Yin, Rongxin & Li, Houpei & Li, Sihui & Yan, Jinyue & Yang, Hongxing, 2022. "Capacity configuration of distributed photovoltaic and battery system for office buildings considering uncertainties," Applied Energy, Elsevier, vol. 319(C).
    5. Lin, Xiaojie & Lin, Xueru & Zhong, Wei & Zhou, Yi, 2024. "Multi-time scale dynamic operation optimization method for industrial park electricity-heat-gas integrated energy system considering demand elasticity," Energy, Elsevier, vol. 293(C).
    6. Han, Zhixin & Fang, Debin & Yang, Peiwen & Lei, Leyao, 2023. "Cooperative mechanisms for multi-energy complementarity in the electricity spot market," Energy Economics, Elsevier, vol. 127(PB).
    7. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Gao, Chong & Ma, Zeyang, 2023. "A novel two-layer nested optimization method for a zero-carbon island integrated energy system, incorporating tidal current power generation," Renewable Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ridha, Hussein Mohammed & Hizam, Hashim & Mirjalili, Seyedali & Othman, Mohammad Lutfi & Ya'acob, Mohammad Effendy & Ahmadipour, Masoud, 2023. "Innovative hybridization of the two-archive and PROMETHEE-II triple-objective and multi-criterion decision making for optimum configuration of the hybrid renewable energy system," Applied Energy, Elsevier, vol. 341(C).
    2. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    3. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    4. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    5. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    6. Amil Daraz & Suheel Abdullah Malik & Ihsan Ul Haq & Khan Bahadar Khan & Ghulam Fareed Laghari & Farhan Zafar, 2020. "Modified PID controller for automatic generation control of multi-source interconnected power system using fitness dependent optimizer algorithm," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-31, November.
    7. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    8. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    9. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    10. Chen, Jie & Huang, Shoujun & Shahabi, Laleh, 2021. "Economic and environmental operation of power systems including combined cooling, heating, power and energy storage resources using developed multi-objective grey wolf algorithm," Applied Energy, Elsevier, vol. 298(C).
    11. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
    12. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    13. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    14. Abbas Rabiee & Ali Abdali & Seyed Masoud Mohseni-Bonab & Mohsen Hazrati, 2021. "Risk-Averse Scheduling of Combined Heat and Power-Based Microgrids in Presence of Uncertain Distributed Energy Resources," Sustainability, MDPI, vol. 13(13), pages 1-24, June.
    15. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Socio-techno-economic design of hybrid renewable energy system using optimization techniques," Renewable Energy, Elsevier, vol. 119(C), pages 459-472.
    16. Manzano, J.M. & Salvador, J.R. & Romaine, J.B. & Alvarado-Barrios, L., 2022. "Economic predictive control for isolated microgrids based on real world demand/renewable energy data and forecast errors," Renewable Energy, Elsevier, vol. 194(C), pages 647-658.
    17. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    18. Gomez-Herrera, Juan A. & Anjos, Miguel F., 2018. "Optimal collaborative demand-response planner for smart residential buildings," Energy, Elsevier, vol. 161(C), pages 370-380.
    19. Giaouris, Damian & Papadopoulos, Athanasios I. & Patsios, Charalampos & Walker, Sara & Ziogou, Chrysovalantou & Taylor, Phil & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2018. "A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response," Applied Energy, Elsevier, vol. 226(C), pages 546-559.
    20. Umeozor, Evar Chinedu & Trifkovic, Milana, 2016. "Operational scheduling of microgrids via parametric programming," Applied Energy, Elsevier, vol. 180(C), pages 672-681.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.