A Dedicated Mixture Model for Clustering Smart Meter Data: Identification and Analysis of Electricity Consumption Behaviors
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
- Beckel, Christian & Sadamori, Leyna & Staake, Thorsten & Santini, Silvia, 2014. "Revealing household characteristics from smart meter data," Energy, Elsevier, vol. 78(C), pages 397-410.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jovani Taveira de Souza & Antonio Carlos de Francisco & Cassiano Moro Piekarski & Guilherme Francisco do Prado, 2019. "Data Mining and Machine Learning to Promote Smart Cities: A Systematic Review from 2000 to 2018," Sustainability, MDPI, vol. 11(4), pages 1-14, February.
- Rubén Pérez-Chacón & José M. Luna-Romera & Alicia Troncoso & Francisco Martínez-Álvarez & José C. Riquelme, 2018. "Big Data Analytics for Discovering Electricity Consumption Patterns in Smart Cities," Energies, MDPI, vol. 11(3), pages 1-19, March.
- van Zoest, Vera & El Gohary, Fouad & Ngai, Edith C.H. & Bartusch, Cajsa, 2021. "Demand charges and user flexibility – Exploring differences in electricity consumer types and load patterns within the Swedish commercial sector," Applied Energy, Elsevier, vol. 302(C).
- Yeong Huei Lee & Mugahed Amran & Yee Yong Lee & Ahmad Beng Hong Kueh & Siaw Fui Kiew & Roman Fediuk & Nikolai Vatin & Yuriy Vasilev, 2021. "Thermal Behavior and Energy Efficiency of Modified Concretes in the Tropical Climate: A Systemic Review," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
- Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
- Nikoleta Andreadou & Evangelos Kotsakis & Marcelo Masera, 2018. "Smart Meter Traffic in a Real LV Distribution Network," Energies, MDPI, vol. 11(5), pages 1-27, May.
- Nakyoung Kim & Sangdon Park & Joohyung Lee & Jun Kyun Choi, 2018. "Load Profile Extraction by Mean-Shift Clustering with Sample Pearson Correlation Coefficient Distance," Energies, MDPI, vol. 11(9), pages 1-20, September.
- Grillone, Benedetto & Mor, Gerard & Danov, Stoyan & Cipriano, Jordi & Sumper, Andreas, 2021. "A data-driven methodology for enhanced measurement and verification of energy efficiency savings in commercial buildings," Applied Energy, Elsevier, vol. 301(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Verma, Anoop & Asadi, Ali & Yang, Kai & Tyagi, Satish, 2015. "A data-driven approach to identify households with plug-in electrical vehicles (PEVs)," Applied Energy, Elsevier, vol. 160(C), pages 71-79.
- Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
- Lesley Thomson & David Jenkins, 2023. "The Use of Real Energy Consumption Data in Characterising Residential Energy Demand with an Inventory of UK Datasets," Energies, MDPI, vol. 16(16), pages 1-29, August.
- Jacqueline Nicole Adams & Zsófia Deme Bélafi & Miklós Horváth & János Balázs Kocsis & Tamás Csoknyai, 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review," Energies, MDPI, vol. 14(9), pages 1-23, April.
- Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
- Akito Ozawa & Ryota Furusato & Yoshikuni Yoshida, 2017. "Tailor-Made Feedback to Reduce Residential Electricity Consumption: The Effect of Information on Household Lifestyle in Japan," Sustainability, MDPI, vol. 9(4), pages 1-23, March.
- Wang, Fei & Lu, Xiaoxing & Chang, Xiqiang & Cao, Xin & Yan, Siqing & Li, Kangping & Duić, Neven & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Household profile identification for behavioral demand response: A semi-supervised learning approach using smart meter data," Energy, Elsevier, vol. 238(PB).
- Chen, Xiao & Zanocco, Chad & Flora, June & Rajagopal, Ram, 2022. "Constructing dynamic residential energy lifestyles using Latent Dirichlet Allocation," Applied Energy, Elsevier, vol. 318(C).
- Viegas, Joaquim L. & Vieira, Susana M. & Melício, R. & Mendes, V.M.F. & Sousa, João M.C., 2016. "Classification of new electricity customers based on surveys and smart metering data," Energy, Elsevier, vol. 107(C), pages 804-817.
- Roberts, Mike B. & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2019. "Characterisation of Australian apartment electricity demand and its implications for low-carbon cities," Energy, Elsevier, vol. 180(C), pages 242-257.
- Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Małgorzata Sztorc, 2022. "The Implementation of the European Green Deal Strategy as a Challenge for Energy Management in the Face of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, April.
- Xu, Xiaojing & Chen, Chien-fei & Zhu, Xiaojuan & Hu, Qinran, 2018. "Promoting acceptance of direct load control programs in the United States: Financial incentive versus control option," Energy, Elsevier, vol. 147(C), pages 1278-1287.
- Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
- Choi, Sunghee & Hwang, Seok-Joon & Denzau, Arthur T., 2021. "Do households conserve electricity when they receive signals of greater consumption than neighbours? The Korean case," Energy, Elsevier, vol. 225(C).
- Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
- Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Haider, Salman & Zafar, Shadman & Jindal, Abhinav, 2024. "Socioeconomic drivers of residential electricity expenditures in India," Utilities Policy, Elsevier, vol. 88(C).
- Mustain Billah & Adnan Anwar & Ziaur Rahman & Syed Md. Galib, 2021. "Bi-Level Poisoning Attack Model and Countermeasure for Appliance Consumption Data of Smart Homes," Energies, MDPI, vol. 14(13), pages 1-17, June.
- Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017.
"What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France,"
Energy Policy, Elsevier, vol. 108(C), pages 593-605.
- Adnane Kendel & Nathalie Lazaric & Kevin Maréchal, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," ULB Institutional Repository 2013/261826, ULB -- Universite Libre de Bruxelles.
- Adnane Kendel & Nathalie Lazaric & Kevin Maréchal, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Post-Print halshs-01630972, HAL.
- Adnane Kendel & Nathalie Lazaric & Kevin Maréchal, 2017. "What Do People 'Learn By Looking' at Direct Feedback on their Energy Consumption? Results of a Field Study in Southern France," GREDEG Working Papers 2017-19, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
More about this item
Keywords
smart electric meters; electricity consumption behaviors; clustering; Gaussian mixture models; expectation and maximization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1446-:d:112719. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.