IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v299y2021ics0306261921005481.html
   My bibliography  Save this article

A multi-objective energy optimization in smart grid with high penetration of renewable energy sources

Author

Listed:
  • Ullah, Kalim
  • Hafeez, Ghulam
  • Khan, Imran
  • Jan, Sadaqat
  • Javaid, Nadeem

Abstract

Energy optimization plays a vital role in energy management, economic savings, effective planning, reliable and secure power grid operation. However, energy optimization is challenging due to the uncertain and intermittent nature of renewable energy sources (RES) and consumer’s behavior. A rigid energy optimization model with assertive intermittent, stochastic, and non-linear behavior capturing abilities is needed in this context. Thus, a novel energy optimization model is developed to optimize the smart microgrid’s performance by reducing the operating cost, pollution emission and maximizing availability using RES. To predict the behavior of RES like solar and wind probability density function (PDF) and cumulative density function (CDF) are proposed. Contrarily, to resolve uncertainty and non-linearity of RES, a hybrid scheme of demand response programs (DRPS) and incline block tariff (IBT) with the participation of industrial, commercial, and residential consumers is introduced. For the developed model, an energy optimization strategy based on multi-objective wind-driven optimization (MOWDO) algorithm and multi-objective genetic algorithm (MOGA) is utilized to optimize the operation cost, pollution emission, and availability with/without the involvement in hybrid DRPS and IBT. Simulation results are considered in two different cases: operating cost and pollution emission, and operating cost and availability with/without participating in the hybrid scheme of DRPS and IBT. Simulation results illustrate that the proposed energy optimization model optimizes the performance of smart microgrid in aspects of operation cost, pollution emission, and availability compared to the existing models with/without involvement in hybrid scheme of DRPS and IBT. Thus, results validate that the proposed energy optimization model’s performance is outstanding compared to the existing models.

Suggested Citation

  • Ullah, Kalim & Hafeez, Ghulam & Khan, Imran & Jan, Sadaqat & Javaid, Nadeem, 2021. "A multi-objective energy optimization in smart grid with high penetration of renewable energy sources," Applied Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:appene:v:299:y:2021:i:c:s0306261921005481
    DOI: 10.1016/j.apenergy.2021.117104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921005481
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chowdhury, S.P. & Chowdhury, S. & Crossley, P.A. & Gaunt, C.T., 2009. "RETRACTED: UK scenario of islanded operation of active distribution networks with renewable distributed generators," Renewable Energy, Elsevier, vol. 34(12), pages 2585-2591.
    2. Aghajani, G.R. & Shayanfar, H.A. & Shayeghi, H., 2017. "Demand side management in a smart micro-grid in the presence of renewable generation and demand response," Energy, Elsevier, vol. 126(C), pages 622-637.
    3. Ferreira, Willian M. & Meneghini, Ivan R. & Brandao, Danilo I. & Guimarães, Frederico G., 2020. "Preference cone based multi-objective evolutionary algorithm applied to optimal management of distributed energy resources in microgrids," Applied Energy, Elsevier, vol. 274(C).
    4. Rahimi, Ehsan & Rabiee, Abdorreza & Aghaei, Jamshid & Muttaqi, Kashem M. & Esmaeel Nezhad, Ali, 2013. "On the management of wind power intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 643-653.
    5. Falsafi, Hananeh & Zakariazadeh, Alireza & Jadid, Shahram, 2014. "The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming," Energy, Elsevier, vol. 64(C), pages 853-867.
    6. Youcef Ettoumi, F. & Mefti, A. & Adane, A. & Bouroubi, M.Y., 2002. "Statistical analysis of solar measurements in Algeria using beta distributions," Renewable Energy, Elsevier, vol. 26(1), pages 47-67.
    7. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher & Alizadeh Pahlavani, Mohammad Reza, 2011. "Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source," Energy, Elsevier, vol. 36(11), pages 6490-6507.
    8. Mohammadnejad, Mehran & Abdollahi, Amir & Rashidinejad, Masoud, 2020. "Possibilistic-probabilistic self-scheduling of PEVAggregator for participation in spinning reserve market considering uncertain DRPs," Energy, Elsevier, vol. 196(C).
    9. Hafeez, Ghulam & Alimgeer, Khurram Saleem & Khan, Imran, 2020. "Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid," Applied Energy, Elsevier, vol. 269(C).
    10. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    11. Vardakas, John S. & Zorba, Nizar & Verikoukis, Christos V., 2015. "Performance evaluation of power demand scheduling scenarios in a smart grid environment," Applied Energy, Elsevier, vol. 142(C), pages 164-178.
    12. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2015. "A detailed model for the optimal management of a multigood microgrid," Applied Energy, Elsevier, vol. 154(C), pages 862-873.
    13. Mirzaei, Mohammad Javad & Kazemi, Ahad & Homaee, Omid, 2014. "Real-world based approach for optimal management of electric vehicles in an intelligent parking lot considering simultaneous satisfaction of vehicle owners and parking operator," Energy, Elsevier, vol. 76(C), pages 345-356.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Despotovic, Milan & Voyant, Cyril & Garcia-Gutierrez, Luis & Almorox, Javier & Notton, Gilles, 2024. "Solar irradiance time series forecasting using auto-regressive and extreme learning methods: Influence of transfer learning and clustering," Applied Energy, Elsevier, vol. 365(C).
    2. Alzahrani, Ahmad & Sajjad, Khizar & Hafeez, Ghulam & Murawwat, Sadia & Khan, Sheraz & Khan, Farrukh Aslam, 2023. "Real-time energy optimization and scheduling of buildings integrated with renewable microgrid," Applied Energy, Elsevier, vol. 335(C).
    3. Li, Qiang & Wei, Fanchao & Zhou, Yongcheng & Li, Jiajia & Zhou, Guowen & Wang, Zhonghao & Liu, Jinfu & Yan, Peigang & Yu, Daren, 2023. "A scheduling framework for VPP considering multiple uncertainties and flexible resources," Energy, Elsevier, vol. 282(C).
    4. Song, Hui & Gu, Mingchen & Liu, Chen & Amani, Ali Moradi & Jalili, Mahdi & Meegahapola, Lasantha & Yu, Xinghuo & Dickeson, George, 2023. "Multi-objective battery energy storage optimization for virtual power plant applications," Applied Energy, Elsevier, vol. 352(C).
    5. Chunxia Gao & Zhaoyan Zhang & Peiguang Wang, 2023. "Day-Ahead Scheduling Strategy Optimization of Electric–Thermal Integrated Energy System to Improve the Proportion of New Energy," Energies, MDPI, vol. 16(9), pages 1-30, April.
    6. Li, Qiang & Zhou, Yongcheng & Wei, Fanchao & Li, Shuangxiu & Wang, Zhonghao & Li, Jiajia & Zhou, Guowen & Liu, Jinfu & Yan, Peigang & Yu, Daren, 2024. "Multi-time scale scheduling for virtual power plants: Integrating the flexibility of power generation and multi-user loads while considering the capacity degradation of energy storage systems," Applied Energy, Elsevier, vol. 362(C).
    7. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    8. Nurgul Moldybayeva & Seitkazy Keshuov & Kajrat Kenzhetaev & Demessova Saule & Aigul Taldybayeva & Ivaylo Stoyanov & Teodor Iliev, 2024. "Decision Matrix in an Autonomous Power System for Agro-Industrial Complexes with Renewable Energy Sources," Energies, MDPI, vol. 17(17), pages 1-16, August.
    9. Durillon, Benoit & Bossu, Adrien, 2024. "Environmental assessment of smart energy management systems at distribution level — A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    10. Fahad R. Albogamy & Ghulam Hafeez & Imran Khan & Sheraz Khan & Hend I. Alkhammash & Faheem Ali & Gul Rukh, 2021. "Efficient Energy Optimization Day-Ahead Energy Forecasting in Smart Grid Considering Demand Response and Microgrids," Sustainability, MDPI, vol. 13(20), pages 1-29, October.
    11. Kalim Ullah & Taimoor Ahmad Khan & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Basem Alamri & Faheem Ali & Sajjad Ali & Sheraz Khan, 2022. "Demand Side Management Strategy for Multi-Objective Day-Ahead Scheduling Considering Wind Energy in Smart Grid," Energies, MDPI, vol. 15(19), pages 1-14, September.
    12. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Zhu, Junpeng & Meng, Dexin & Dong, Xiaofeng & Fu, Zhixin & Yuan, Yue, 2023. "An integrated electricity - hydrogen market design for renewable-rich energy system considering mobile hydrogen storage," Renewable Energy, Elsevier, vol. 202(C), pages 961-972.
    14. Yang, Xiaohui & Wang, Xiaopeng & Deng, Yeheng & Mei, Linghao & Deng, Fuwei & Zhang, Zhonglian, 2023. "Integrated energy system scheduling model based on non-complete interval multi-objective fuzzy optimization," Renewable Energy, Elsevier, vol. 218(C).
    15. Md Motinur Rahman & Saikot Hossain Dadon & Miao He & Michael Giesselmann & Md Mahmudul Hasan, 2024. "An Overview of Power System Flexibility: High Renewable Energy Penetration Scenarios," Energies, MDPI, vol. 17(24), pages 1-31, December.
    16. Ghaemi, Zahra & Tran, Thomas T.D. & Smith, Amanda D., 2022. "Comparing classical and metaheuristic methods to optimize multi-objective operation planning of district energy systems considering uncertainties," Applied Energy, Elsevier, vol. 321(C).
    17. Seyed Reza Seyednouri & Amin Safari & Meisam Farrokhifar & Sajad Najafi Ravadanegh & Anas Quteishat & Mahmoud Younis, 2023. "Day-Ahead Scheduling of Multi-Energy Microgrids Based on a Stochastic Multi-Objective Optimization Model," Energies, MDPI, vol. 16(4), pages 1-17, February.
    18. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    19. Hassan, Qusay & Khadom, Anees A. & Algburi, Sameer & Al-Jiboory, Ali Khudhair & Sameen, Aws Zuhair & Alkhafaji, Mohamed Ayad & Mahmoud, Haitham A. & Awwad, Emad Mahrous & Mahood, Hameed B. & Kazem, Hu, 2024. "Implications of a smart grid-integrated renewable distributed generation capacity expansion strategy: The case of Iraq," Renewable Energy, Elsevier, vol. 221(C).
    20. Lv, Hong & Sun, Yongwen & Wang, Sen & Chen, Jingxian & Gao, Yuanfeng & Hu, Ding & Yao, Han & Zhang, Cunman, 2024. "Synergistic gradient distribution of IrO2/TiNX ratio and ionomer content reduces the internal voltage loss of the anode catalytic layer in PEM water electrolysis," Applied Energy, Elsevier, vol. 363(C).
    21. Kang, Zhenye & Wang, Hao & Liu, Yanrong & Mo, Jingke & Wang, Min & Li, Jing & Tian, Xinlong, 2022. "Exploring and understanding the internal voltage losses through catalyst layers in proton exchange membrane water electrolysis devices," Applied Energy, Elsevier, vol. 317(C).
    22. Oussama Laayati & Hicham El Hadraoui & Nasr Guennoui & Mostafa Bouzi & Ahmed Chebak, 2022. "Smart Energy Management System: Design of a Smart Grid Test Bench for Educational Purposes," Energies, MDPI, vol. 15(7), pages 1-31, April.
    23. Sun, Lingyun & Yin, Jiemin & Bilal, Ahmad Raza, 2023. "Green financing and wind power energy generation: Empirical insights from China," Renewable Energy, Elsevier, vol. 206(C), pages 820-827.
    24. Zafar Mahmood & Benmao Cheng & Naveed Anwer Butt & Ghani Ur Rehman & Muhammad Zubair & Afzal Badshah & Muhammad Aslam, 2023. "Efficient Scheduling of Home Energy Management Controller (HEMC) Using Heuristic Optimization Techniques," Sustainability, MDPI, vol. 15(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aghajani, G.R. & Shayanfar, H.A. & Shayeghi, H., 2017. "Demand side management in a smart micro-grid in the presence of renewable generation and demand response," Energy, Elsevier, vol. 126(C), pages 622-637.
    2. Kalim Ullah & Sajjad Ali & Taimoor Ahmad Khan & Imran Khan & Sadaqat Jan & Ibrar Ali Shah & Ghulam Hafeez, 2020. "An Optimal Energy Optimization Strategy for Smart Grid Integrated with Renewable Energy Sources and Demand Response Programs," Energies, MDPI, vol. 13(21), pages 1-17, November.
    3. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    4. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Rabiee, Abdorreza & Sadeghi, Mohammad & Aghaeic, Jamshid & Heidari, Alireza, 2016. "Optimal operation of microgrids through simultaneous scheduling of electrical vehicles and responsive loads considering wind and PV units uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 721-739.
    6. Ali M. Jasim & Basil H. Jasim & Habib Kraiem & Aymen Flah, 2022. "A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    7. Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.
    8. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Saad M. Abdullah & Makbul A. Ramli, 2023. "Sizing of Hybrid PV/Battery/Wind/Diesel Microgrid System Using an Improved Decomposition Multi-Objective Evolutionary Algorithm Considering Uncertainties and Battery Degradation," Sustainability, MDPI, vol. 15(14), pages 1-38, July.
    9. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Ho-Sung Ryu & Mun-Kyeom Kim, 2020. "Two-Stage Optimal Microgrid Operation with a Risk-Based Hybrid Demand Response Program Considering Uncertainty," Energies, MDPI, vol. 13(22), pages 1-25, November.
    11. Mehrdad Tahmasebi & Jagadeesh Pasupuleti & Fatemeh Mohamadian & Mohammad Shakeri & Josep M. Guerrero & M. Reyasudin Basir Khan & Muhammad Shahzad Nazir & Amir Safari & Najmeh Bazmohammadi, 2021. "Optimal Operation of Stand-Alone Microgrid Considering Emission Issues and Demand Response Program Using Whale Optimization Algorithm," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    12. Ramli, Makbul A.M. & Bouchekara, H.R.E.H. & Alghamdi, Abdulsalam S., 2018. "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 400-411.
    13. Fadaee, M. & Radzi, M.A.M., 2012. "Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3364-3369.
    14. Vinothini Arumugham & Hayder M. A. Ghanimi & Denis A. Pustokhin & Irina V. Pustokhina & Vidya Sagar Ponnam & Meshal Alharbi & Parkavi Krishnamoorthy & Sudhakar Sengan, 2023. "An Artificial-Intelligence-Based Renewable Energy Prediction Program for Demand-Side Management in Smart Grids," Sustainability, MDPI, vol. 15(6), pages 1-26, March.
    15. Reihani, Ehsan & Motalleb, Mahdi & Thornton, Matsu & Ghorbani, Reza, 2016. "A novel approach using flexible scheduling and aggregation to optimize demand response in the developing interactive grid market architecture," Applied Energy, Elsevier, vol. 183(C), pages 445-455.
    16. Borhanazad, Hanieh & Mekhilef, Saad & Gounder Ganapathy, Velappa & Modiri-Delshad, Mostafa & Mirtaheri, Ali, 2014. "Optimization of micro-grid system using MOPSO," Renewable Energy, Elsevier, vol. 71(C), pages 295-306.
    17. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
    18. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    19. Koo, Jamin & Park, Kyungtae & Shin, Dongil & Yoon, En Sup, 2011. "Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea's renewable energy plan," Applied Energy, Elsevier, vol. 88(6), pages 2254-2260, June.
    20. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:299:y:2021:i:c:s0306261921005481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.