IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v298y2021ics0306261921006486.html
   My bibliography  Save this article

Replacing liquid fossil fuels and hydrocarbon chemical feedstocks with liquid biofuels from large-scale nuclear biorefineries

Author

Listed:
  • Forsberg, C.W.
  • Dale, B.E.
  • Jones, D.S.
  • Hossain, T.
  • Morais, A.R.C.
  • Wendt, L.M.

Abstract

Liquid fossil fuels (1) enable transportation and (2) provide energy for mobile work platforms and (3) supply dispatchable energy to highly variable demand (seasonal heating and peak electricity). We describe a system to replace liquid fossil fuels with drop-in biofuels including gasoline, diesel and jet fuel. Because growing biomass removes carbon dioxide from the air, there is no net addition of carbon dioxide to the atmosphere from burning biofuels. In addition, with proper management, biofuel systems can sequester large quantities of carbon as soil organic matter, improving soil fertility and providing other environmental services. In the United States liquid biofuels can potentially replace all liquid fossil fuels. The required system has two key features. First, the heat and hydrogen for conversion of biomass into high-quality liquid fuels is provided by external low-carbon energy sources--nuclear energy or fossil fuels with carbon capture and sequestration. Using external energy inputs can almost double the energy content of the liquid fuel per unit of biomass feedstock by fully converting the carbon in biomass into a hydrocarbon fuel. Second, competing effectively with fossil fuels requires very large biorefineries—the equivalent of a 250,000 barrel per day oil refinery. This requires commercializing methods for converting local biomass into high-density storable feedstocks that can be economically shipped to large-scale biorefineries.

Suggested Citation

  • Forsberg, C.W. & Dale, B.E. & Jones, D.S. & Hossain, T. & Morais, A.R.C. & Wendt, L.M., 2021. "Replacing liquid fossil fuels and hydrocarbon chemical feedstocks with liquid biofuels from large-scale nuclear biorefineries," Applied Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006486
    DOI: 10.1016/j.apenergy.2021.117225
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921006486
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maurício Roberto Cherubin & João Luís Nunes Carvalho & Carlos Eduardo Pellegrino Cerri & Luiz Augusto Horta Nogueira & Glaucia Mendes Souza & Heitor Cantarella, 2021. "Land Use and Management Effects on Sustainable Sugarcane-Derived Bioenergy," Land, MDPI, vol. 10(1), pages 1-24, January.
    2. Charles A.S. Hall & Bruce E. Dale & David Pimentel, 2011. "Seeking to Understand the Reasons for Different Energy Return on Investment (EROI) Estimates for Biofuels," Sustainability, MDPI, vol. 3(12), pages 1-20, December.
    3. Gonzales, Daniela & Searcy, Erin M. & Ekşioğlu, Sandra D., 2013. "Cost analysis for high-volume and long-haul transportation of densified biomass feedstock," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 48-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Forsberg, Charles & Foss, Andrew W., 2023. "Fission battery markets and economic requirements," Applied Energy, Elsevier, vol. 329(C).
    2. Pulla Rose Havilah & Amit Kumar Sharma & Gopalakrishnan Govindasamy & Leonidas Matsakas & Alok Patel, 2022. "Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas," Energies, MDPI, vol. 15(11), pages 1-19, May.
    3. Forsberg, Charles, 2023. "Low-cost crushed-rock heat storage with oil or salt heat transfer," Applied Energy, Elsevier, vol. 335(C).
    4. Margarida Casau & Marta Ferreira Dias & João C. O. Matias & Leonel J. R. Nunes, 2022. "Residual Biomass: A Comprehensive Review on the Importance, Uses and Potential in a Circular Bioeconomy Approach," Resources, MDPI, vol. 11(4), pages 1-16, March.
    5. Forsberg, Charles, 2023. "What is the long-term demand for liquid hydrocarbon fuels and feedstocks?," Applied Energy, Elsevier, vol. 341(C).
    6. Lin, Pengmusen & Yu, Xinyu & Wang, Han & Ming, Hui & Ge, Shengbo & Liu, Fang & Peng, Haowei & Sonne, Christian & Zhang, Libo, 2023. "Life cycle assessment of bio-oil prepared from low-temperature hydrothermal oxide-catalyzed cotton stalk," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    2. Devin Moeller & Heidi L. Sieverding & James J. Stone, 2017. "Comparative Farm-Gate Life Cycle Assessment of Oilseed Feedstocks in the Northern Great Plains," Biophysical Economics and Resource Quality, Springer, vol. 2(4), pages 1-16, December.
    3. Tiziano Gomiero, 2015. "Are Biofuels an Effective and Viable Energy Strategy for Industrialized Societies? A Reasoned Overview of Potentials and Limits," Sustainability, MDPI, vol. 7(7), pages 1-31, June.
    4. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    5. Joanna Šukasiewicz & Bartłomiej Bajan, 2024. "Farm Gate Energy Intensity of Food Production in Poland - Considering the Physical and Economic Aspects of Production," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 216-225, July.
    6. Nicholas Glass & Brenda Molano-Flores & Eduardo Dias de Oliveira & Erika Meraz & Samira Umar & Christopher J. Whelan & Miquel A. Gonzalez-Meler, 2021. "Does Pastoral Land-Use Legacy Influence Topsoil Carbon and Nitrogen Accrual Rates in Tallgrass Prairie Restorations?," Land, MDPI, vol. 10(7), pages 1-20, July.
    7. Lambert, Jessica G. & Hall, Charles A.S. & Balogh, Stephen & Gupta, Ajay & Arnold, Michelle, 2014. "Energy, EROI and quality of life," Energy Policy, Elsevier, vol. 64(C), pages 153-167.
    8. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    9. Awais, Fawad & Flodén, Jonas & Svanberg, Martin, 2021. "Logistic characteristics and requirements of Swedish wood biofuel heating plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Sangpil Ko & Kyoungjoon Choi & Seungmin Yu & Jun Lee, 2022. "A Stochastic Optimization Model for Sustainable Multimodal Transportation for Bioenergy Production," Sustainability, MDPI, vol. 14(3), pages 1-21, February.
    12. Hossain, Tasmin & Jones, Daniela S. & Godfrey, Edward & Saloni, Daniel & Sharara, Mahmoud & Hartley, Damon S., 2024. "Characterizing value-added pellets obtained from blends of miscanthus, corn stover, and switchgrass," Renewable Energy, Elsevier, vol. 227(C).
    13. Salehi, Mohammad & Khajehpour, Hossein & Saboohi, Yadollah, 2020. "Extended Energy Return on Investment of multiproduct energy systems," Energy, Elsevier, vol. 192(C).
    14. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    15. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    16. Aghalari, Amin & Nur, Farjana & Marufuzzaman, Mohammad, 2020. "A Bender’s based nested decomposition algorithm to solve a stochastic inland waterway port management problem considering perishable product," International Journal of Production Economics, Elsevier, vol. 229(C).
    17. Hossain, Tasmin & Jones, Daniela S. & Hartley, Damon S. & Thompson, David N. & Langholtz, Matthew & Davis, Maggie, 2022. "Nth-plant scenario for forest resources and short rotation woody crops: Biorefineries and depots in the contiguous US," Applied Energy, Elsevier, vol. 325(C).
    18. Yun Bai & Xiaopeng Li & Fan Peng & Xin Wang & Yanfeng Ouyang, 2015. "Effects of Disruption Risks on Biorefinery Location Design," Energies, MDPI, vol. 8(2), pages 1-19, February.
    19. Chih-Chun Kung & Tao Wu, 2020. "A spatial equilibrium analysis of using agricultural resources to produce biofuel," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(2), pages 74-83.
    20. Hall, Charles A.S. & Lambert, Jessica G. & Balogh, Stephen B., 2014. "EROI of different fuels and the implications for society," Energy Policy, Elsevier, vol. 64(C), pages 141-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.