IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v329y2023ics0306261922015239.html
   My bibliography  Save this article

Fission battery markets and economic requirements

Author

Listed:
  • Forsberg, Charles
  • Foss, Andrew W.

Abstract

Fission Batteries (FBs) are nuclear reactors for customers with heat demands less than 250 MWt—replacing oil and natural gas in a low-carbon economy. Individual FBs would have outputs between 5 and 30 MWt. The small FB size has two major benefits: (1) the possibility of mass production and (2) ease of transport and leasing with return of used FBs to factory for refurbishing and reuse. Comparatively, these two features are lacking in larger conventional reactors. Larger reactors are not transportable and thus can’t obtain the manufacturing economics possible with mass production or the operational advantages of returning the FB to the factory after use. Leasing places the regulatory, maintenance and fuel-cycle burden on the leasing company that is minimized by large-fleet operations of identical units. The markets and economic requirements for FBs were examined. The primary existing markets are industrial, biofuels, off-grid electricity and container ships. Two major future markets were identified—advanced biofuels and hydrogen. In a low-carbon world, the competitive price range for heat is $20–50/MWh ($6–15/million BTU) and $70–115/MWh for non-grid electricity. The primary competition in these sectors is likely to be biofuels and hydrogen produced using alternative energy sources—grid electricity is non-competitive. Larger users of energy have alternative low-carbon energy choices including modular nuclear reactors and fossil fuels with carbon capture and sequestration (CCS).

Suggested Citation

  • Forsberg, Charles & Foss, Andrew W., 2023. "Fission battery markets and economic requirements," Applied Energy, Elsevier, vol. 329(C).
  • Handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015239
    DOI: 10.1016/j.apenergy.2022.120266
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922015239
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roege, Paul E. & Collier, Zachary A. & Mancillas, James & McDonagh, John A. & Linkov, Igor, 2014. "Metrics for energy resilience," Energy Policy, Elsevier, vol. 72(C), pages 249-256.
    2. Schoeneberger, Carrie A. & McMillan, Colin A. & Kurup, Parthiv & Akar, Sertac & Margolis, Robert & Masanet, Eric, 2020. "Solar for industrial process heat: A review of technologies, analysis approaches, and potential applications in the United States," Energy, Elsevier, vol. 206(C).
    3. Forsberg, C.W. & Dale, B.E. & Jones, D.S. & Hossain, T. & Morais, A.R.C. & Wendt, L.M., 2021. "Replacing liquid fossil fuels and hydrocarbon chemical feedstocks with liquid biofuels from large-scale nuclear biorefineries," Applied Energy, Elsevier, vol. 298(C).
    4. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    5. Jacopo Buongiorno & Ben Carmichael & Bradley Dunkin & John Parsons & Dirk Smit, 2021. "Can Nuclear Batteries Be Economically Competitive in Large Markets?," Energies, MDPI, vol. 14(14), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rongjie Song & Michael Moorehead & Dewen Yushu & Jia-Hong Ke, 2024. "Lattice Design and Advanced Modeling to Guide the Design of High-Performance Lightweight Structural Materials," Energies, MDPI, vol. 17(6), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    2. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Adrian Grimm & Patrik Schönfeldt & Herena Torio & Peter Klement & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2021. "Deduction of Optimal Control Strategies for a Sector-Coupled District Energy System," Energies, MDPI, vol. 14(21), pages 1-13, November.
    4. Mayyas Alsalman & Vian Ahmed & Zied Bahroun & Sara Saboor, 2023. "An Economic Analysis of Solar Energy Generation Policies in the UAE," Energies, MDPI, vol. 16(7), pages 1-25, March.
    5. Shen, Lijuan & Cassottana, Beatrice & Tang, Loon Ching, 2018. "Statistical trend tests for resilience of power systems," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 138-147.
    6. Dong, Kangyin & Dong, Xiucheng & Jiang, Qingzhe & Zhao, Jun, 2021. "Assessing energy resilience and its greenhouse effect: A global perspective," Energy Economics, Elsevier, vol. 104(C).
    7. Timothy Fraser & Lily Cunningham & Amos Nasongo, 2021. "Build Back Better? Effects of Crisis on Climate Change Adaptation Through Solar Power in Japan and the United States," Global Environmental Politics, MIT Press, vol. 21(1), pages 54-75, Winter.
    8. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    9. Carvallo, Juan Pablo & Frick, Natalie Mims & Schwartz, Lisa, 2022. "A review of examples and opportunities to quantify the grid reliability and resilience impacts of energy efficiency," Energy Policy, Elsevier, vol. 169(C).
    10. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    11. Stamatios K. Chrysikopoulos & Panos T. Chountalas & Dimitrios A. Georgakellos & Athanasios G. Lagodimos, 2024. "Decarbonization in the Oil and Gas Sector: The Role of Power Purchase Agreements and Renewable Energy Certificates," Sustainability, MDPI, vol. 16(15), pages 1-24, July.
    12. Hadi Tannous & Valentina Stojceska & Savas A. Tassou, 2023. "The Use of Solar Thermal Heating in SPIRE and Non-SPIRE Industrial Processes," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    13. Johansson, Bengt & Jonsson, Daniel K. & Veibäck, Ester & Sonnsjö, Hannes, 2016. "Assessing the capabilites to manage risks in energy systems–analytical perspectives and frameworks with a starting point in Swedish experiences," Energy, Elsevier, vol. 116(P1), pages 429-435.
    14. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    15. Mujjuni, F. & Betts, T. & To, L.S. & Blanchard, R.E., 2021. "Resilience a means to development: A resilience assessment framework and a catalogue of indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Kristin B. Raub & Kristine F. Stepenuck & Bindu Panikkar & Jennie C. Stephens, 2021. "An Analysis of Resilience Planning at the Nexus of Food, Energy, Water, and Transportation in Coastal US Cities," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    17. Landon Yoder & Alora Cain & Ananya Rao & Nathaniel Geiger & Ben Kravitz & Mack Mercer & Deidra Miniard & Sangeet Nepal & Thomas Nunn & Mary Sluder & Grace Weiler & Shahzeen Z. Attari, 2024. "Muddling through Climate Change: A Qualitative Exploration of India and U.S. Climate Experts’ Perspectives on Solutions, Pathways, and Barriers," Sustainability, MDPI, vol. 16(13), pages 1-20, June.
    18. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    19. Paltsev, Sergey & Morris, Jennifer & Kheshgi, Haroon & Herzog, Howard, 2021. "Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation," Applied Energy, Elsevier, vol. 300(C).
    20. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.