IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1497-d335483.html
   My bibliography  Save this article

A Novel Approach to Minimize Energy Requirements and Maximize Biomass Utilization of the Sugarcane Harvesting System in Sri Lanka

Author

Listed:
  • Thilanka Ariyawansha

    (Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
    Division of Mechanization Technology, Sugarcane Research Institute, Uda Walawe 70190, Sri Lanka)

  • Dimuthu Abeyrathna

    (Division of Mechanization Technology, Sugarcane Research Institute, Uda Walawe 70190, Sri Lanka)

  • Buddhika Kulasekara

    (Division of Crop Nutrition, Sugarcane Research Institute, Uda Walawe 70190, Sri Lanka)

  • Devananda Pottawela

    (Division of Technology Transfer and Development, Sugarcane Research Institute, Uda Walawe 70190, Sri Lanka)

  • Dinesh Kodithuwakku

    (Economics Biometry & IT Division, Sugarcane Research Institute, Uda Walawe 70190, Sri Lanka)

  • Sandya Ariyawansha

    (Economics Biometry & IT Division, Sugarcane Research Institute, Uda Walawe 70190, Sri Lanka)

  • Natasha Sewwandi

    (Processing Technology, Sugarcane Research Institute, Uda Walawe 70190, Sri Lanka)

  • WBMAC Bandara

    (Department of Regional Resource Environmental Engineering, Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan)

  • Tofael Ahamed

    (Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan)

  • Ryozo Noguchi

    (Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan)

Abstract

Sugarcane harvesting requires a significant amount of energy and time to manage dry leaves after the harvesting process. Therefore, the objective of this study was to minimize the energy requirement to process the cane and dry leaves’ harvesting (CDLH) for sugarcane while, at the same time, maximizing sugar production from cane and energy from dry leaves in Sri Lanka. The CDLH was conceptualized using a novel approach to optimize sugarcane harvesting to maximize biomass supply for energy production while reducing supply chain sugar-loss. The CDLH was investigated for manual harvesting capacity, energy consumption, sugar loss, and biomass energy potential. It was observed that CDLH consumed higher energy compared to the present practices of harvesting. However, the energy used for fieldwork was reduced because of the shifting of cane chopping and cleaning from the field to the factory. Low bulk density of the harvested cane of the CDLH system had a higher energy requirement in transportation. Comparatively, CDLH showed higher biomass energy potential and less sugar loss. High energy potential increases the energy potential to consumption ratio compared to the existing method. Therefore, the theoretical evaluation showed that the CDLH system can produce more than 20 kg of sugar and 879 MJ of electricity when processing 1 t of sugarcane.

Suggested Citation

  • Thilanka Ariyawansha & Dimuthu Abeyrathna & Buddhika Kulasekara & Devananda Pottawela & Dinesh Kodithuwakku & Sandya Ariyawansha & Natasha Sewwandi & WBMAC Bandara & Tofael Ahamed & Ryozo Noguchi, 2020. "A Novel Approach to Minimize Energy Requirements and Maximize Biomass Utilization of the Sugarcane Harvesting System in Sri Lanka," Energies, MDPI, vol. 13(6), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1497-:d:335483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1497/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1497/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. João Paulo Guerra & Fernando Henrique Cardoso & Alex Nogueira & Luiz Kulay, 2018. "Thermodynamic and Environmental Analysis of Scaling up Cogeneration Units Driven by Sugarcane Biomass to Enhance Power Exports," Energies, MDPI, vol. 11(1), pages 1-23, January.
    2. Smithers, Jeff, 2014. "Review of sugarcane trash recovery systems for energy cogeneration in South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 915-925.
    3. Charles A.S. Hall & Bruce E. Dale & David Pimentel, 2011. "Seeking to Understand the Reasons for Different Energy Return on Investment (EROI) Estimates for Biofuels," Sustainability, MDPI, vol. 3(12), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gustavo Carvalho Santos & Flavio Barboza & Antônio Cláudio Paschoarelli Veiga & Mateus Ferreira Silva, 2021. "Forecasting Brazilian Ethanol Spot Prices Using LSTM," Energies, MDPI, vol. 14(23), pages 1-15, November.
    2. Rafael Ninno Muniz & Stéfano Frizzo Stefenon & William Gouvêa Buratto & Ademir Nied & Luiz Henrique Meyer & Erlon Cristian Finardi & Ricardo Marino Kühl & José Alberto Silva de Sá & Brigida Ramati Per, 2020. "Tools for Measuring Energy Sustainability: A Comparative Review," Energies, MDPI, vol. 13(9), pages 1-27, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Devin Moeller & Heidi L. Sieverding & James J. Stone, 2017. "Comparative Farm-Gate Life Cycle Assessment of Oilseed Feedstocks in the Northern Great Plains," Biophysical Economics and Resource Quality, Springer, vol. 2(4), pages 1-16, December.
    2. Tiziano Gomiero, 2015. "Are Biofuels an Effective and Viable Energy Strategy for Industrialized Societies? A Reasoned Overview of Potentials and Limits," Sustainability, MDPI, vol. 7(7), pages 1-31, June.
    3. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    4. Joanna Šukasiewicz & Bartłomiej Bajan, 2024. "Farm Gate Energy Intensity of Food Production in Poland - Considering the Physical and Economic Aspects of Production," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 216-225, July.
    5. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    6. Lambert, Jessica G. & Hall, Charles A.S. & Balogh, Stephen & Gupta, Ajay & Arnold, Michelle, 2014. "Energy, EROI and quality of life," Energy Policy, Elsevier, vol. 64(C), pages 153-167.
    7. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    8. Claudia Cristina Sanchez Moore & Luiz Kulay, 2019. "Effect of the Implementation of Carbon Capture Systems on the Environmental, Energy and Economic Performance of the Brazilian Electricity Matrix," Energies, MDPI, vol. 12(2), pages 1-18, January.
    9. Salehi, Mohammad & Khajehpour, Hossein & Saboohi, Yadollah, 2020. "Extended Energy Return on Investment of multiproduct energy systems," Energy, Elsevier, vol. 192(C).
    10. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    11. Forsberg, C.W. & Dale, B.E. & Jones, D.S. & Hossain, T. & Morais, A.R.C. & Wendt, L.M., 2021. "Replacing liquid fossil fuels and hydrocarbon chemical feedstocks with liquid biofuels from large-scale nuclear biorefineries," Applied Energy, Elsevier, vol. 298(C).
    12. Ncamisile Nondumiso Maseko & Denise Schneider & Susan Wassersleben & Dirk Enke & Samuel Ayodele Iwarere & Jonathan Pocock & Annegret Stark, 2021. "The Production of Biogenic Silica from Different South African Agricultural Residues through a Thermo-Chemical Treatment Method," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    13. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    14. Adriano da S. Marques & Monica Carvalho & Álvaro A. V. Ochoa & Ronelly J. Souza & Carlos A. C. dos Santos, 2020. "Exergoeconomic Assessment of a Compact Electricity-Cooling Cogeneration Unit," Energies, MDPI, vol. 13(20), pages 1-18, October.
    15. Chih-Chun Kung & Tao Wu, 2020. "A spatial equilibrium analysis of using agricultural resources to produce biofuel," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(2), pages 74-83.
    16. Hall, Charles A.S. & Lambert, Jessica G. & Balogh, Stephen B., 2014. "EROI of different fuels and the implications for society," Energy Policy, Elsevier, vol. 64(C), pages 141-152.
    17. Isadora Luiza Climaco Cunha & Fábio Rosa & Luiz Kulay, 2021. "Green Coalescent Synthesis Based on the Design for Environment (DfE) Principles: Brazilian Experience," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    18. Khatiwada, Dilip & Leduc, Sylvain & Silveira, Semida & McCallum, Ian, 2016. "Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 371-386.
    19. Kamran Ikram & Yasir Niaz & Muhammad Zeeshan Mansha & Muhamad Usman Ghani & Faizan Shabir & Muhammad Mohsin Waqas & Muhammad Adnan Bodlah & Arslan Afzal & Muhammad Mubashar Omer, 2020. "Cleaning Material Arrangement Testing For Sugarcane Detrasher: A Simulation Approach," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(2), pages 65-68, May.
    20. Carvalho, Danilo José & Veiga, João Paulo Soto & Bizzo, Waldir Antonio, 2017. "Analysis of energy consumption in three systems for collecting sugarcane straw for use in power generation," Energy, Elsevier, vol. 119(C), pages 178-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1497-:d:335483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.