IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v298y2021ics030626192100547x.html
   My bibliography  Save this article

Evaluating uncertainties in electrochemical impedance spectra of solid oxide fuel cells

Author

Listed:
  • Žnidarič, Luka
  • Nusev, Gjorgji
  • Morel, Bertrand
  • Mougin, Julie
  • Juričić, Đani
  • Boškoski, Pavle

Abstract

Electrochemical impedance spectroscopy (EIS) is a widely used tool for characterization of fuel cells and other electrochemical conversion systems. When applied to the on-line monitoring in the context of in-field applications, the disturbances, drifts and sensor noise may cause severe distortions in the evaluated spectra, especially in the low-frequency part. Failure to ignore the random effects can result in misinterpreted spectra and, consequently, in misleading diagnostic reasoning. This fact has not been often addressed in the research so far. In this paper, we propose an approach to the quantification of the spectral uncertainty, which relies on evaluating the uncertainty of the equivalent circuit model (ECM). We apply the computationally efficient variational Bayes (VB) method and compare the quality of the results with those obtained with the Markov chain Monte Carlo (MCMC) algorithm. Namely, MCMC algorithm returns accurate distributions of the estimated model parameters, while VB approach provides the approximate distributions. By using simulated and real data we show that approximate results provided by VB approach, although slightly over-optimistic, are still close to the more realistic MCMC estimates. A great advantage of the VB method for online monitoring is low computational load, which is several orders of magnitude lower compared to MCMC. The performance of VB algorithm is demonstrated on a case of ECM parameters estimation in a 6 cell solid oxide fuel cell (SOFC) stack. The complete numerical implementation for recreating the results can be found at https://repo.ijs.si/lznidaric/variational-bayes-supplementary-material.

Suggested Citation

  • Žnidarič, Luka & Nusev, Gjorgji & Morel, Bertrand & Mougin, Julie & Juričić, Đani & Boškoski, Pavle, 2021. "Evaluating uncertainties in electrochemical impedance spectra of solid oxide fuel cells," Applied Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:appene:v:298:y:2021:i:c:s030626192100547x
    DOI: 10.1016/j.apenergy.2021.117101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192100547X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pasquier, Philippe & Marcotte, Denis, 2020. "Robust identification of volumetric heat capacity and analysis of thermal response tests by Bayesian inference with correlated residuals," Applied Energy, Elsevier, vol. 261(C).
    2. Gallo, Marco & Polverino, Pierpaolo & Mougin, Julie & Morel, Bertrand & Pianese, Cesare, 2020. "Coupling electrochemical impedance spectroscopy and model-based aging estimation for solid oxide fuel cell stacks lifetime prediction," Applied Energy, Elsevier, vol. 279(C).
    3. Choi, Wonjun & Menberg, Kathrin & Kikumoto, Hideki & Heo, Yeonsook & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference of structural error in inverse models of thermal response tests," Applied Energy, Elsevier, vol. 228(C), pages 1473-1485.
    4. Liu, Yongqi & Qin, Hui & Zhang, Zhendong & Pei, Shaoqian & Jiang, Zhiqiang & Feng, Zhongkai & Zhou, Jianzhong, 2020. "Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model," Applied Energy, Elsevier, vol. 260(C).
    5. Liu, Yongqi & Qin, Hui & Zhang, Zhendong & Pei, Shaoqian & Wang, Chao & Yu, Xiang & Jiang, Zhiqiang & Zhou, Jianzhong, 2019. "Ensemble spatiotemporal forecasting of solar irradiation using variational Bayesian convolutional gate recurrent unit network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Choi, Wonjun & Kikumoto, Hideki & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference for thermal response test parameter estimation and uncertainty assessment," Applied Energy, Elsevier, vol. 209(C), pages 306-321.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yang & Yu, Xiaoran & Zhu, Wenchao & Xie, Changjun & Zhao, Bo & Zhang, Leiqi & Shi, Ying & Huang, Liang & Zhang, Ruiming, 2023. "Degradation prediction of proton exchange membrane fuel cells with model uncertainty quantification," Renewable Energy, Elsevier, vol. 219(P2).
    2. Mohammad Alboghobeish & Andrea Monforti Ferrario & Davide Pumiglia & Massimiliano Della Pietra & Stephen J. McPhail & Sergii Pylypko & Domenico Borello, 2022. "Developing an Automated Tool for Quantitative Analysis of the Deconvoluted Electrochemical Impedance Response of a Solid Oxide Fuel Cell," Energies, MDPI, vol. 15(10), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    2. Choi, Wonjun & Kikumoto, Hideki & Ooka, Ryozo, 2022. "Probabilistic uncertainty quantification of borehole thermal resistance in real-world scenarios," Energy, Elsevier, vol. 254(PC).
    3. Zhang, Xueping & Han, Zongwei & Li, Gui & Li, Xiuming, 2022. "Effect of temperature measurement error on parameters estimation accuracy for thermal response tests," Renewable Energy, Elsevier, vol. 185(C), pages 230-240.
    4. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    5. Jia, Jie & Lee, W.L. & Cheng, Yuanda, 2019. "Field demonstration of a first constant-temperature thermal response test with both heat injection and extraction for ground source heat pump systems," Applied Energy, Elsevier, vol. 249(C), pages 79-86.
    6. Pasquier, Philippe & Marcotte, Denis, 2020. "Robust identification of volumetric heat capacity and analysis of thermal response tests by Bayesian inference with correlated residuals," Applied Energy, Elsevier, vol. 261(C).
    7. Zhang, Xueping & Han, Zongwei & Meng, Xinwei & Li, Gui & Ji, Qiang & Li, Xiuming & Yang, Lingyan, 2021. "Study on high-precision identification method of ground thermal properties based on neural network model," Renewable Energy, Elsevier, vol. 163(C), pages 1838-1848.
    8. Shi, Jihao & Li, Junjie & Usmani, Asif Sohail & Zhu, Yuan & Chen, Guoming & Yang, Dongdong, 2021. "Probabilistic real-time deep-water natural gas hydrate dispersion modeling by using a novel hybrid deep learning approach," Energy, Elsevier, vol. 219(C).
    9. Liu, Guanjun & Wang, Yun & Qin, Hui & Shen, Keyan & Liu, Shuai & Shen, Qin & Qu, Yuhua & Zhou, Jianzhong, 2023. "Probabilistic spatiotemporal forecasting of wind speed based on multi-network deep ensembles method," Renewable Energy, Elsevier, vol. 209(C), pages 231-247.
    10. Yongqi Liu & Yuanyuan Li & Guibing Hou & Hui Qin, 2024. "Multi-Objective Short-Term Operation of Hydro–Wind–Photovoltaic–Thermal Hybrid System Considering Power Peak Shaving, the Economy and the Environment," Energies, MDPI, vol. 17(18), pages 1-24, September.
    11. Hou, D. & Hassan, I.G. & Wang, L., 2021. "Review on building energy model calibration by Bayesian inference," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Shi, Jihao & Zhang, Xinqi & Zhang, Haoran & Wang, Qiliang & Yan, Jinyue & Xiao, Linda, 2024. "Automated detection and diagnosis of leak fault considering volatility by graph deep probability learning," Applied Energy, Elsevier, vol. 361(C).
    13. Liu, Guanjun & Qin, Hui & Shen, Qin & Lyv, Hao & Qu, Yuhua & Fu, Jialong & Liu, Yongqi & Zhou, Jianzhong, 2021. "Probabilistic spatiotemporal solar irradiation forecasting using deep ensembles convolutional shared weight long short-term memory network," Applied Energy, Elsevier, vol. 300(C).
    14. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning," Applied Energy, Elsevier, vol. 300(C).
    15. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
    16. Zhang, Changxing & Song, Wei & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2019. "Effect of vertical ground temperature distribution on parameter estimation of in-situ thermal response test with unstable heat rate," Renewable Energy, Elsevier, vol. 136(C), pages 264-274.
    17. Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
    18. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    19. Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong & Liu, Zhenkun, 2021. "Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection," Applied Energy, Elsevier, vol. 301(C).
    20. Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:298:y:2021:i:c:s030626192100547x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.