IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3803-d1448521.html
   My bibliography  Save this article

Controller Hardware in the Loop Platform for Evaluating Current-Sharing and Hot-Swap in Microgrids

Author

Listed:
  • Juan Martínez-Nolasco

    (Departamento de Ingeniería Mecatrónica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas 600, Celaya 38010, Mexico)

  • Víctor Sámano-Ortega

    (Departamento de Ingeniería Mecatrónica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas 600, Celaya 38010, Mexico)

  • Heriberto Rodriguez-Estrada

    (Departamento de Ingeniería Mecatrónica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas 600, Celaya 38010, Mexico)

  • Mauro Santoyo-Mora

    (Departamento de Ingeniería Mecatrónica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas 600, Celaya 38010, Mexico)

  • Elias Rodriguez-Segura

    (Departamento de Ingeniería Eléctrica y Electrónica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas 600, Celaya 38010, Mexico)

  • José Zavala-Villalpando

    (Departamento de Ingeniería Mecatrónica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas 600, Celaya 38010, Mexico)

Abstract

Microgrids have increased in popularity thanks to both the integration of renewable energy resources and their energy distribution capability for remote locations. Moreover, the microgrids, mainly using multiple generators connected in parallel, acquire additional advantages by using both Hot-Swap and Current-Sharing techniques. This paper presents the development of a Hardware in the Loop platform to test Current-Sharing algorithms. It is reinforced that the use of a real-time simulation based on Hardware in the Loop is a viable and cost-effective alternative in the validation of controllers. The platform was developed in a graphical programming environment (LabVIEW 2015) and implemented with NI MyRIO 1900 (National Instruments Corp., Austin, TX, USA) development boards for easier reproducibility. The entire code project is openly available and provided in this paper. A system of photovoltaic energy generators was used to evaluate the performance of the HIL platform. As a result, the platform was able to reproduce a similar behavior to the photovoltaic generator, presenting average mean errors of 0.4 V and 0.2 A in its voltage and current, respectively. Additionally, the platform showed its capability to test Current-Sharing algorithms in the occurrence of Hot-Swap events. This work contributes with a validation tool for energy management systems applied to microgrids.

Suggested Citation

  • Juan Martínez-Nolasco & Víctor Sámano-Ortega & Heriberto Rodriguez-Estrada & Mauro Santoyo-Mora & Elias Rodriguez-Segura & José Zavala-Villalpando, 2024. "Controller Hardware in the Loop Platform for Evaluating Current-Sharing and Hot-Swap in Microgrids," Energies, MDPI, vol. 17(15), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3803-:d:1448521
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fatin Ishraque, Md. & Shezan, Sk. A. & Ali, M.M. & Rashid, M.M., 2021. "Optimization of load dispatch strategies for an islanded microgrid connected with renewable energy sources," Applied Energy, Elsevier, vol. 292(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    2. Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2024. "Optimal Power Dispatch for Maximum Energy Community Welfare by Considering Closed Distribution Systems and Renewable Sources," Energies, MDPI, vol. 17(18), pages 1-21, September.
    3. Mousavi, Seyed Ali & Toopshekan, Ashkan & Mehrpooya, Mehdi & Delpisheh, Mostafa, 2023. "Comprehensive exergetic performance assessment and techno-financial optimization of off-grid hybrid renewable configurations with various dispatch strategies and solar tracking systems," Renewable Energy, Elsevier, vol. 210(C), pages 40-63.
    4. Giovanni Brumana & Elisa Ghirardi & Giuseppe Franchini, 2024. "Comparison of Different Power Generation Mixes for High Penetration of Renewables," Sustainability, MDPI, vol. 16(19), pages 1-16, September.
    5. Myada Shadoul & Rashid Al Abri & Hassan Yousef & Abdullah Al Shereiqi, 2024. "Designing a Dispatch Engine for Hybrid Renewable Power Stations Using a Mixed-Integer Linear Programming Technique," Energies, MDPI, vol. 17(13), pages 1-27, July.
    6. Pavić, Ivan & Čović, Nikolina & Pandžić, Hrvoje, 2022. "PV–battery-hydrogen plant: Cutting green hydrogen costs through multi-market positioning," Applied Energy, Elsevier, vol. 328(C).
    7. Wang, Xuebin & Song, Wenle & Wu, Haotian & Liang, Haiping & Saboor, Ahmed, 2022. "Microgrid operation relying on economic problems considering renewable sources, storage system, and demand-side management using developed gray wolf optimization algorithm," Energy, Elsevier, vol. 248(C).
    8. Mehrdad Tahmasebi & Jagadeesh Pasupuleti & Fatemeh Mohamadian & Mohammad Shakeri & Josep M. Guerrero & M. Reyasudin Basir Khan & Muhammad Shahzad Nazir & Amir Safari & Najmeh Bazmohammadi, 2021. "Optimal Operation of Stand-Alone Microgrid Considering Emission Issues and Demand Response Program Using Whale Optimization Algorithm," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    9. Md. Fatin Ishraque & Akhlaqur Rahman & Sk. A. Shezan & GM Shafiullah, 2022. "Operation and Assessment of a Microgrid for Maldives: Islanded and Grid-Tied Mode," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    10. Yue Cao & Tao Li & Tianyu He & Yuwei Wei & Ming Li & Fengqi Si, 2022. "Multiobjective Load Dispatch for Coal-Fired Power Plants under Renewable-Energy Accommodation Based on a Nondominated-Sorting Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 15(8), pages 1-19, April.
    11. Jun Dong & Yaoyu Zhang & Yuanyuan Wang & Yao Liu, 2021. "A Two-Stage Optimal Dispatching Model for Micro Energy Grid Considering the Dual Goals of Economy and Environmental Protection under CVaR," Sustainability, MDPI, vol. 13(18), pages 1-28, September.
    12. Yang, Xiaohui & Wang, Xiaopeng & Leng, Zhengyang & Deng, Yeheng & Deng, Fuwei & Zhang, Zhonglian & Yang, Li & Liu, Xiaoping, 2023. "An optimized scheduling strategy combining robust optimization and rolling optimization to solve the uncertainty of RES-CCHP MG," Renewable Energy, Elsevier, vol. 211(C), pages 307-325.
    13. Yujiang Ye & Ruifeng Shi & Yuqin Gao & Xiaolei Ma & Di Wang, 2023. "Two-Stage Optimal Scheduling of Highway Self-Consistent Energy System in Western China," Energies, MDPI, vol. 16(5), pages 1-18, March.
    14. Al-Orabi, Ahmed M. & Osman, Mohamed G. & Sedhom, Bishoy E., 2023. "Analysis of the economic and technological viability of producing green hydrogen with renewable energy sources in a variety of climates to reduce CO2 emissions: A case study in Egypt," Applied Energy, Elsevier, vol. 338(C).
    15. Ahmed S. Menesy & Hamdy M. Sultan & Ibrahim O. Habiballah & Hasan Masrur & Kaisar R. Khan & Muhammad Khalid, 2023. "Optimal Configuration of a Hybrid Photovoltaic/Wind Turbine/Biomass/Hydro-Pumped Storage-Based Energy System Using a Heap-Based Optimization Algorithm," Energies, MDPI, vol. 16(9), pages 1-26, April.
    16. Md. Fatin Ishraque & Akhlaqur Rahman & Sk. A. Shezan & G. M. Shafiullah & Ali H Alenezi & Md Delwar Hossen & Noor E Nahid Bintu, 2024. "Design Optimization of a Grid-Tied Hybrid System for a Department at a University with a Dispatch Strategy-Based Assessment," Sustainability, MDPI, vol. 16(7), pages 1-17, March.
    17. Izabela Rojek & Dariusz Mikołajewski & Adam Mroziński & Marek Macko, 2023. "Machine Learning- and Artificial Intelligence-Derived Prediction for Home Smart Energy Systems with PV Installation and Battery Energy Storage," Energies, MDPI, vol. 16(18), pages 1-26, September.
    18. Md. Fatin Ishraque & Sk. A. Shezan & Md. Sohel Rana & S. M. Muyeen & Akhlaqur Rahman & Liton Chandra Paul & Md. Shafiul Islam, 2021. "Optimal Sizing and Assessment of a Renewable Rich Standalone Hybrid Microgrid Considering Conventional Dispatch Methodologies," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    19. Md. Fatin Ishraque & Akhlaqur Rahman & Sk. A. Shezan & S. M. Muyeen, 2022. "Grid Connected Microgrid Optimization and Control for a Coastal Island in the Indian Ocean," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    20. Marcelino, C.G. & Leite, G.M.C. & Wanner, E.F. & Jiménez-Fernández, S. & Salcedo-Sanz, S., 2023. "Evaluating the use of a Net-Metering mechanism in microgrids to reduce power generation costs with a swarm-intelligent algorithm," Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3803-:d:1448521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.