IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v171y2021icp958-970.html
   My bibliography  Save this article

Granular activated carbon supplementation enhances anaerobic digestion of lipid-rich wastewaters

Author

Listed:
  • Tan, Lea Chua
  • Lin, Richen
  • Murphy, Jerry D.
  • Lens, Piet N.L.

Abstract

This study investigated the application of a conductive material, granular activated carbon (GAC), as an approach to improve anaerobic lipid degradation and methane production. Anaerobic biomethane potential (BMP) assays were performed in 120 ml batch anaerobic digestion (AD) vials using 5 gVS/L anaerobic sludge as inoculum. Different BMP assays were carried out testing the impact of increasing GAC concentrations (0–33 g/L), use of different sludge types (granular vs. crushed), different substrates (oleate C18:1, butter and dairy wastewaters) and different temperatures (15, 37 and 55 °C). Experimental results and model fitting showed that addition of GAC supports faster methane production, i.e. the lag-phase decreased by 2–1000% depending on the GAC concentration and AD temperature. GAC addition also showed faster consumption of both volatile fatty acid and long-chain fatty acid, particularly palmitate (C16:0). Thermodynamic modelling suggested that GAC-induced direct interspecies electron transfer is kinetically superior to conventional indirect hydrogen transfer during AD of oleate. However, when the GAC concentration exceeded 8.0 g/L, there was a 20–50% decrease in the maximum methane production compared to the control. Overall, GAC supplementation has a significant potential to improve the digestion of lipid-rich wastewater which benefits design of modern bioenergy systems.

Suggested Citation

  • Tan, Lea Chua & Lin, Richen & Murphy, Jerry D. & Lens, Piet N.L., 2021. "Granular activated carbon supplementation enhances anaerobic digestion of lipid-rich wastewaters," Renewable Energy, Elsevier, vol. 171(C), pages 958-970.
  • Handle: RePEc:eee:renene:v:171:y:2021:i:c:p:958-970
    DOI: 10.1016/j.renene.2021.02.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121002627
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.02.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lü, Fan & Liu, Yang & Shao, Liming & He, Pinjing, 2019. "Powdered biochar doubled microbial growth in anaerobic digestion of oil," Applied Energy, Elsevier, vol. 247(C), pages 605-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Logan, Mohanakrishnan & Tan, Lea Chua & Nzeteu, Corine Orline & Lens, Piet N.L., 2023. "Effect of selenate on treatment of glycerol containing wastewater in UASB reactors," Renewable Energy, Elsevier, vol. 206(C), pages 97-110.
    2. Wang, Dong-Hui & Lian, Shu-Juan & Wang, Ruo-Nan & Zou, Hua & Guo, Rong-Bo & Fu, Shan-Fei, 2023. "Enhanced anaerobic digestion of food waste by metal cations and mechanisms analysis," Renewable Energy, Elsevier, vol. 218(C).
    3. Wu, Benteng & Lin, Richen & Kang, Xihui & Deng, Chen & Dobson, Alan D.W. & Murphy, Jerry D., 2021. "Improved robustness of ex-situ biological methanation for electro-fuel production through the addition of graphene," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thakur, Nandini & Jalalah, Mohammed & Alsareii, Saeed A. & Harraz, Farid A. & Almadiy, Abdulrhman A. & Su, Shaochen & Salama, El-Sayed & Li, Xiangkai, 2024. "Anaerobic digestion of fat, oil, and grease (FOG) under combined additives: Enhanced digestibility, biogas production, and microbiome," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Wu, Benteng & Lin, Richen & Kang, Xihui & Deng, Chen & Dobson, Alan D.W. & Murphy, Jerry D., 2021. "Improved robustness of ex-situ biological methanation for electro-fuel production through the addition of graphene," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Wu, Benteng & Lin, Richen & O'Shea, Richard & Deng, Chen & Rajendran, Karthik & Murphy, Jerry D., 2021. "Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Liu, Yang & He, Pinjing & Duan, Haowen & Shao, Liming & Lü, Fan, 2021. "Low calcium dosage favors methanation of long-chain fatty acids," Applied Energy, Elsevier, vol. 285(C).
    5. Abbas, Yasir & Yun, Sining & Wang, Ziqi & Zhang, Yongwei & Zhang, Xianmei & Wang, Kaijun, 2021. "Recent advances in bio-based carbon materials for anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Ning, Jing & Kamali, Mohammadreza & Appels, Lise, 2024. "Advances in carbonaceous promoters for anaerobic digestion processes – Functions and mechanisms of action," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    7. Zhan, Yuanhang & Zhu, Jun, 2024. "Response surface methodology and artificial neural network-genetic algorithm for modeling and optimization of bioenergy production from biochar-improved anaerobic digestion," Applied Energy, Elsevier, vol. 355(C).
    8. Tien Ngo & Leadin S. Khudur & Ibrahim Gbolahan Hakeem & Kalpit Shah & Aravind Surapaneni & Andrew S. Ball, 2022. "Wood Biochar Enhances the Valorisation of the Anaerobic Digestion of Chicken Manure," Clean Technol., MDPI, vol. 4(2), pages 1-20, May.
    9. Agnieszka A. Pilarska & Krzysztof Pilarski & Tomasz Kulupa & Adrianna Kubiak & Agnieszka Wolna-Maruwka & Alicja Niewiadomska & Jacek Dach, 2024. "Additives Improving the Efficiency of Biogas Production as an Alternative Energy Source—A Review," Energies, MDPI, vol. 17(17), pages 1-26, September.
    10. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & O’Shea, Richard & Murphy, Jerry D., 2020. "Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:171:y:2021:i:c:p:958-970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.