IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v282y2021ipbs0306261920315403.html
   My bibliography  Save this article

Clustered multi-node learning of electric vehicle charging flexibility

Author

Listed:
  • Gilanifar, Mostafa
  • Parvania, Masood

Abstract

Forecasting the available flexible load provided by electric vehicles would enable electric utilities to make informed decision in utilizing these loads for enhancing the operational efficiency of distribution systems. To overcome the lack of historical loads data at newly-installed EV charging stations, this paper proposes a clustered multi-node learning with Gaussian Process (CMNL-GP) method to fuse data from multiple charging stations and to learn them simultaneously. The proposed method improves the forecasting accuracy in each node by transferring meaningful information among multiple nodes. The proposed method also performs a clustering algorithm within its objective function to obtain within-cluster similarity, since all the nodes may not be related equally, and the nodes within a cluster may have a stronger correlation. To characterize the clustered structures and to transfer the shared information among multiple nodes, different regularization terms are imposed in the objective function of the proposed method. The proposed clustered multi-node learning also utilizes the Gaussian Process for statistical attributes of the residual stochastic process, which refers to the information that may not be shared among multiple nodes and can be node-specific. The proposed method is validated by real-world EV charging stations data in State of Utah, USA, to demonstrate the effectiveness of the proposed algorithm.

Suggested Citation

  • Gilanifar, Mostafa & Parvania, Masood, 2021. "Clustered multi-node learning of electric vehicle charging flexibility," Applied Energy, Elsevier, vol. 282(PB).
  • Handle: RePEc:eee:appene:v:282:y:2021:i:pb:s0306261920315403
    DOI: 10.1016/j.apenergy.2020.116125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920315403
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shireen, Tahasin & Shao, Chenhui & Wang, Hui & Li, Jingjing & Zhang, Xi & Li, Mingyang, 2018. "Iterative multi-task learning for time-series modeling of solar panel PV outputs," Applied Energy, Elsevier, vol. 212(C), pages 654-662.
    2. Xing Zhang, 2018. "Short-Term Load Forecasting for Electric Bus Charging Stations Based on Fuzzy Clustering and Least Squares Support Vector Machine Optimized by Wolf Pack Algorithm," Energies, MDPI, vol. 11(6), pages 1-18, June.
    3. Yunyan Li & Yuansheng Huang & Meimei Zhang, 2018. "Short-Term Load Forecasting for Electric Vehicle Charging Station Based on Niche Immunity Lion Algorithm and Convolutional Neural Network," Energies, MDPI, vol. 11(5), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Genov, Evgenii & Cauwer, Cedric De & Kriekinge, Gilles Van & Coosemans, Thierry & Messagie, Maarten, 2024. "Forecasting flexibility of charging of electric vehicles: Tree and cluster-based methods," Applied Energy, Elsevier, vol. 353(PA).
    2. Zhiyuan Zhuang & Xidong Zheng & Zixing Chen & Tao Jin & Zengqin Li, 2022. "Load Forecast of Electric Vehicle Charging Station Considering Multi-Source Information and User Decision Modification," Energies, MDPI, vol. 15(19), pages 1-13, September.
    3. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    4. Joel Alpízar-Castillo & Laura Ramirez-Elizondo & Pavol Bauer, 2022. "Assessing the Role of Energy Storage in Multiple Energy Carriers toward Providing Ancillary Services: A Review," Energies, MDPI, vol. 16(1), pages 1-31, December.
    5. Qing Li & Xue Li & Zuyu Liu & Yaping Qi, 2022. "Application of Clustering Algorithms in the Location of Electric Taxi Charging Stations," Sustainability, MDPI, vol. 14(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanchari Deb, 2021. "Machine Learning for Solving Charging Infrastructure Planning Problems: A Comprehensive Review," Energies, MDPI, vol. 14(23), pages 1-19, November.
    2. Seon Hyeog Kim & Gyul Lee & Gu-Young Kwon & Do-In Kim & Yong-June Shin, 2018. "Deep Learning Based on Multi-Decomposition for Short-Term Load Forecasting," Energies, MDPI, vol. 11(12), pages 1-17, December.
    3. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    4. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    5. Musaed Alhussein & Syed Irtaza Haider & Khursheed Aurangzeb, 2019. "Microgrid-Level Energy Management Approach Based on Short-Term Forecasting of Wind Speed and Solar Irradiance," Energies, MDPI, vol. 12(8), pages 1-27, April.
    6. Sahar Koohfar & Wubeshet Woldemariam & Amit Kumar, 2023. "Performance Comparison of Deep Learning Approaches in Predicting EV Charging Demand," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    7. Bampos, Zafeirios N. & Laitsos, Vasilis M. & Afentoulis, Konstantinos D. & Vagropoulos, Stylianos I. & Biskas, Pantelis N., 2024. "Electric vehicles load forecasting for day-ahead market participation using machine and deep learning methods," Applied Energy, Elsevier, vol. 360(C).
    8. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    9. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
    10. Liu, Luyao & Zhao, Yi & Chang, Dongliang & Xie, Jiyang & Ma, Zhanyu & Sun, Qie & Yin, Hongyi & Wennersten, Ronald, 2018. "Prediction of short-term PV power output and uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 700-711.
    11. Giacomo Talluri & Gabriele Maria Lozito & Francesco Grasso & Carlos Iturrino Garcia & Antonio Luchetta, 2021. "Optimal Battery Energy Storage System Scheduling within Renewable Energy Communities," Energies, MDPI, vol. 14(24), pages 1-23, December.
    12. Liu, Jin-peng & Zhang, Teng-xi & Zhu, Jiang & Ma, Tian-nan, 2018. "Allocation optimization of electric vehicle charging station (EVCS) considering with charging satisfaction and distributed renewables integration," Energy, Elsevier, vol. 164(C), pages 560-574.
    13. Kakkar, Riya & Agrawal, Smita & Tanwar, Sudeep, 2024. "A systematic survey on demand response management schemes for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    14. Wang, Jing-Yi & Qian, Zheng & Zareipour, Hamidreza & Wood, David, 2018. "Performance assessment of photovoltaic modules based on daily energy generation estimation," Energy, Elsevier, vol. 165(PB), pages 1160-1172.
    15. Lan, Hai & Zhang, Chi & Hong, Ying-Yi & He, Yin & Wen, Shuli, 2019. "Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network," Applied Energy, Elsevier, vol. 247(C), pages 389-402.
    16. Sanchari Deb & Xiao-Zhi Gao, 2022. "Prediction of Charging Demand of Electric City Buses of Helsinki, Finland by Random Forest," Energies, MDPI, vol. 15(10), pages 1-18, May.
    17. Peng Guo & Jian Fu & XiYun Yang, 2018. "Condition Monitoring and Fault Diagnosis of Wind Turbines Gearbox Bearing Temperature Based on Kolmogorov-Smirnov Test and Convolutional Neural Network Model," Energies, MDPI, vol. 11(9), pages 1-16, August.
    18. Lintao Yang & Honggeng Yang, 2019. "Analysis of Different Neural Networks and a New Architecture for Short-Term Load Forecasting," Energies, MDPI, vol. 12(8), pages 1-23, April.
    19. Jian Chen & Fangyi Li & Ranran Yang & Dawei Ma, 2020. "Impacts of Increasing Private Charging Piles on Electric Vehicles’ Charging Profiles: A Case Study in Hefei City, China," Energies, MDPI, vol. 13(17), pages 1-17, August.
    20. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:282:y:2021:i:pb:s0306261920315403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.