IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v282y2021ipbs0306261920315403.html
   My bibliography  Save this article

Clustered multi-node learning of electric vehicle charging flexibility

Author

Listed:
  • Gilanifar, Mostafa
  • Parvania, Masood

Abstract

Forecasting the available flexible load provided by electric vehicles would enable electric utilities to make informed decision in utilizing these loads for enhancing the operational efficiency of distribution systems. To overcome the lack of historical loads data at newly-installed EV charging stations, this paper proposes a clustered multi-node learning with Gaussian Process (CMNL-GP) method to fuse data from multiple charging stations and to learn them simultaneously. The proposed method improves the forecasting accuracy in each node by transferring meaningful information among multiple nodes. The proposed method also performs a clustering algorithm within its objective function to obtain within-cluster similarity, since all the nodes may not be related equally, and the nodes within a cluster may have a stronger correlation. To characterize the clustered structures and to transfer the shared information among multiple nodes, different regularization terms are imposed in the objective function of the proposed method. The proposed clustered multi-node learning also utilizes the Gaussian Process for statistical attributes of the residual stochastic process, which refers to the information that may not be shared among multiple nodes and can be node-specific. The proposed method is validated by real-world EV charging stations data in State of Utah, USA, to demonstrate the effectiveness of the proposed algorithm.

Suggested Citation

  • Gilanifar, Mostafa & Parvania, Masood, 2021. "Clustered multi-node learning of electric vehicle charging flexibility," Applied Energy, Elsevier, vol. 282(PB).
  • Handle: RePEc:eee:appene:v:282:y:2021:i:pb:s0306261920315403
    DOI: 10.1016/j.apenergy.2020.116125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920315403
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shireen, Tahasin & Shao, Chenhui & Wang, Hui & Li, Jingjing & Zhang, Xi & Li, Mingyang, 2018. "Iterative multi-task learning for time-series modeling of solar panel PV outputs," Applied Energy, Elsevier, vol. 212(C), pages 654-662.
    2. Xing Zhang, 2018. "Short-Term Load Forecasting for Electric Bus Charging Stations Based on Fuzzy Clustering and Least Squares Support Vector Machine Optimized by Wolf Pack Algorithm," Energies, MDPI, vol. 11(6), pages 1-18, June.
    3. Yunyan Li & Yuansheng Huang & Meimei Zhang, 2018. "Short-Term Load Forecasting for Electric Vehicle Charging Station Based on Niche Immunity Lion Algorithm and Convolutional Neural Network," Energies, MDPI, vol. 11(5), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Genov, Evgenii & Cauwer, Cedric De & Kriekinge, Gilles Van & Coosemans, Thierry & Messagie, Maarten, 2024. "Forecasting flexibility of charging of electric vehicles: Tree and cluster-based methods," Applied Energy, Elsevier, vol. 353(PA).
    2. Zhiyuan Zhuang & Xidong Zheng & Zixing Chen & Tao Jin & Zengqin Li, 2022. "Load Forecast of Electric Vehicle Charging Station Considering Multi-Source Information and User Decision Modification," Energies, MDPI, vol. 15(19), pages 1-13, September.
    3. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    4. Joel Alpízar-Castillo & Laura Ramirez-Elizondo & Pavol Bauer, 2022. "Assessing the Role of Energy Storage in Multiple Energy Carriers toward Providing Ancillary Services: A Review," Energies, MDPI, vol. 16(1), pages 1-31, December.
    5. Qing Li & Xue Li & Zuyu Liu & Yaping Qi, 2022. "Application of Clustering Algorithms in the Location of Electric Taxi Charging Stations," Sustainability, MDPI, vol. 14(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanchari Deb, 2021. "Machine Learning for Solving Charging Infrastructure Planning Problems: A Comprehensive Review," Energies, MDPI, vol. 14(23), pages 1-19, November.
    2. Seon Hyeog Kim & Gyul Lee & Gu-Young Kwon & Do-In Kim & Yong-June Shin, 2018. "Deep Learning Based on Multi-Decomposition for Short-Term Load Forecasting," Energies, MDPI, vol. 11(12), pages 1-17, December.
    3. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    4. Sahar Koohfar & Wubeshet Woldemariam & Amit Kumar, 2023. "Performance Comparison of Deep Learning Approaches in Predicting EV Charging Demand," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    5. Bampos, Zafeirios N. & Laitsos, Vasilis M. & Afentoulis, Konstantinos D. & Vagropoulos, Stylianos I. & Biskas, Pantelis N., 2024. "Electric vehicles load forecasting for day-ahead market participation using machine and deep learning methods," Applied Energy, Elsevier, vol. 360(C).
    6. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
    7. Liu, Luyao & Zhao, Yi & Chang, Dongliang & Xie, Jiyang & Ma, Zhanyu & Sun, Qie & Yin, Hongyi & Wennersten, Ronald, 2018. "Prediction of short-term PV power output and uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 700-711.
    8. Liu, Jin-peng & Zhang, Teng-xi & Zhu, Jiang & Ma, Tian-nan, 2018. "Allocation optimization of electric vehicle charging station (EVCS) considering with charging satisfaction and distributed renewables integration," Energy, Elsevier, vol. 164(C), pages 560-574.
    9. Wang, Jing-Yi & Qian, Zheng & Zareipour, Hamidreza & Wood, David, 2018. "Performance assessment of photovoltaic modules based on daily energy generation estimation," Energy, Elsevier, vol. 165(PB), pages 1160-1172.
    10. Lan, Hai & Zhang, Chi & Hong, Ying-Yi & He, Yin & Wen, Shuli, 2019. "Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network," Applied Energy, Elsevier, vol. 247(C), pages 389-402.
    11. Sanchari Deb & Xiao-Zhi Gao, 2022. "Prediction of Charging Demand of Electric City Buses of Helsinki, Finland by Random Forest," Energies, MDPI, vol. 15(10), pages 1-18, May.
    12. Peng Guo & Jian Fu & XiYun Yang, 2018. "Condition Monitoring and Fault Diagnosis of Wind Turbines Gearbox Bearing Temperature Based on Kolmogorov-Smirnov Test and Convolutional Neural Network Model," Energies, MDPI, vol. 11(9), pages 1-16, August.
    13. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    14. Golsefidi, Atefeh Hemmati & Hüttel, Frederik Boe & Peled, Inon & Samaranayake, Samitha & Pereira, Francisco Câmara, 2023. "A joint machine learning and optimization approach for incremental expansion of electric vehicle charging infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    15. Shuxia Yang & Xianguo Zhu & Shengjiang Peng, 2020. "Prospect Prediction of Terminal Clean Power Consumption in China via LSSVM Algorithm Based on Improved Evolutionary Game Theory," Energies, MDPI, vol. 13(8), pages 1-17, April.
    16. Namhyun Ahn & So Yeon Jo & Suk-Ju Kang, 2019. "Constraint-Aware Electricity Consumption Estimation for Prevention of Overload by Electric Vehicle Charging Station," Energies, MDPI, vol. 12(6), pages 1-18, March.
    17. Carlos Ruiz & Carlos M. Alaíz & José R. Dorronsoro, 2020. "Multitask Support Vector Regression for Solar and Wind Energy Prediction," Energies, MDPI, vol. 13(23), pages 1-21, November.
    18. Jean-Michel Clairand & Javier Rodríguez-García & Carlos Álvarez-Bel, 2018. "Electric Vehicle Charging Strategy for Isolated Systems with High Penetration of Renewable Generation," Energies, MDPI, vol. 11(11), pages 1-21, November.
    19. Andu Dukpa & Boguslaw Butrylo & Bala Venkatesh, 2023. "Comparative Analysis and Optimal Operation of an On-Grid and Off-Grid Solar Photovoltaic-Based Electric Vehicle Charging Station," Energies, MDPI, vol. 16(24), pages 1-17, December.
    20. Miguel López Santos & Xela García-Santiago & Fernando Echevarría Camarero & Gonzalo Blázquez Gil & Pablo Carrasco Ortega, 2022. "Application of Temporal Fusion Transformer for Day-Ahead PV Power Forecasting," Energies, MDPI, vol. 15(14), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:282:y:2021:i:pb:s0306261920315403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.