IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7566-d844063.html
   My bibliography  Save this article

Application of Clustering Algorithms in the Location of Electric Taxi Charging Stations

Author

Listed:
  • Qing Li

    (College of Mathematics and System, Shandong University of Science and Technology, Qingdao 266590, China)

  • Xue Li

    (College of Mathematics and System, Shandong University of Science and Technology, Qingdao 266590, China)

  • Zuyu Liu

    (College of Mathematics and System, Shandong University of Science and Technology, Qingdao 266590, China)

  • Yaping Qi

    (College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract

The reasonable layout of charging stations is an important measure to improve the penetration rate of the electric taxi market. Based on the multi-type clustering algorithm, a widely applicable electric taxi charging stations locating method is proposed. By analyzing the massive gasoline taxi GPS trajectory data, the parking information and charging requirements of electric taxis are extracted, and the research area is divided into reasonable grids. Then, the divided grids are respectively subjected to multiple same-type clustering and multiple multi-type clustering algorithms, so as to help find out the location of the charging station, and a comparative analysis is performed. The empirical analysis shows that the positioning results of the multiple multi-type clustering algorithms are more reasonable than the multiple same-type clustering algorithms, which can effectively prolong the driving distance of electric taxis and save the travel time of drivers.

Suggested Citation

  • Qing Li & Xue Li & Zuyu Liu & Yaping Qi, 2022. "Application of Clustering Algorithms in the Location of Electric Taxi Charging Stations," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7566-:d:844063
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7566/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7566/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suganya, S. & Raja, S. Charles & Venkatesh, P., 2017. "Simultaneous coordination of distinct plug-in Hybrid Electric Vehicle charging stations: A modified Particle Swarm Optimization approach," Energy, Elsevier, vol. 138(C), pages 92-102.
    2. Apostolaki-Iosifidou, Elpiniki & Codani, Paul & Kempton, Willett, 2017. "Measurement of power loss during electric vehicle charging and discharging," Energy, Elsevier, vol. 127(C), pages 730-742.
    3. Ruifeng Shi & Jiahua Liu & Zhenhong Liao & Li Niu & Eke Ibrahim & Fang Fu, 2019. "An Electric Taxi Charging Station Planning Scheme Based on an Improved Destination Choice Method," Energies, MDPI, vol. 12(19), pages 1-21, October.
    4. Gilanifar, Mostafa & Parvania, Masood, 2021. "Clustered multi-node learning of electric vehicle charging flexibility," Applied Energy, Elsevier, vol. 282(PB).
    5. Tao, Ye & Huang, Miaohua & Yang, Lan, 2018. "Data-driven optimized layout of battery electric vehicle charging infrastructure," Energy, Elsevier, vol. 150(C), pages 735-744.
    6. Danny García Sánchez & Alejandra Tabares & Lucas Teles Faria & Juan Carlos Rivera & John Fredy Franco, 2022. "A Clustering Approach for the Optimal Siting of Recharging Stations in the Electric Vehicle Routing Problem with Time Windows," Energies, MDPI, vol. 15(7), pages 1-19, March.
    7. Xu, Min & Meng, Qiang, 2020. "Optimal deployment of charging stations considering path deviation and nonlinear elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 120-142.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Hui & Hao, Xiang, 2024. "Location decision of electric vehicle charging station based on a novel grey correlation comprehensive evaluation multi-criteria decision method," Energy, Elsevier, vol. 299(C).
    2. Wilfredo F. Yushimito & Sebastian Moreno & Daniela Miranda, 2023. "The Potential of Battery Electric Taxis in Santiago de Chile," Sustainability, MDPI, vol. 15(11), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
    2. Tao, Ye & Huang, Miaohua & Yang, Lan, 2018. "Data-driven optimized layout of battery electric vehicle charging infrastructure," Energy, Elsevier, vol. 150(C), pages 735-744.
    3. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
    4. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    5. Ghotge, Rishabh & van Wijk, Ad & Lukszo, Zofia, 2021. "Off-grid solar charging of electric vehicles at long-term parking locations," Energy, Elsevier, vol. 227(C).
    6. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    7. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    8. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    9. Hong Gao & Kai Liu & Xinchao Peng & Cheng Li, 2020. "Optimal Location of Fast Charging Stations for Mixed Traffic of Electric Vehicles and Gasoline Vehicles Subject to Elastic Demands," Energies, MDPI, vol. 13(8), pages 1-16, April.
    10. Raja S, Charles & Kumar N M, Vijaya & J, Senthil kumar & Nesamalar J, Jeslin Drusila, 2021. "Enhancing system reliability by optimally integrating PHEV charging station and renewable distributed generators: A Bi-Level programming approach," Energy, Elsevier, vol. 229(C).
    11. Robin Smit & Eckard Helmers & Michael Schwingshackl & Martin Opetnik & Daniel Kennedy, 2024. "Greenhouse Gas Emissions Performance of Electric, Hydrogen and Fossil-Fuelled Freight Trucks with Uncertainty Estimates Using a Probabilistic Life-Cycle Assessment (pLCA)," Sustainability, MDPI, vol. 16(2), pages 1-38, January.
    12. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    13. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    14. Peng Xu & Qixing Liu & Yuhu Wu, 2023. "Energy Saving-Oriented Multi-Depot Vehicle Routing Problem with Time Windows in Disaster Relief," Energies, MDPI, vol. 16(4), pages 1-15, February.
    15. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Oluwasola O. Ademulegun & Paul MacArtain & Bukola Oni & Neil J. Hewitt, 2022. "Multi-Stage Multi-Criteria Decision Analysis for Siting Electric Vehicle Charging Stations within and across Border Regions," Energies, MDPI, vol. 15(24), pages 1-28, December.
    17. Milan Straka & Pasquale De Falco & Gabriella Ferruzzi & Daniela Proto & Gijs van der Poel & Shahab Khormali & v{L}ubov{s} Buzna, 2019. "Predicting popularity of EV charging infrastructure from GIS data," Papers 1910.02498, arXiv.org.
    18. Subhojit Dawn & Gummadi Srinivasa Rao & M. L. N. Vital & K. Dhananjay Rao & Faisal Alsaif & Mohammed H. Alsharif, 2023. "Profit Extension of a Wind-Integrated Competitive Power System by Vehicle-to-Grid Integration and UPFC Placement," Energies, MDPI, vol. 16(18), pages 1-24, September.
    19. Mohd Bilal & Ibrahim Alsaidan & Muhannad Alaraj & Fahad M. Almasoudi & Mohammad Rizwan, 2022. "Techno-Economic and Environmental Analysis of Grid-Connected Electric Vehicle Charging Station Using AI-Based Algorithm," Mathematics, MDPI, vol. 10(6), pages 1-40, March.
    20. Wang, Yue & Das, Ridoy & Putrus, Ghanim & Kotter, Richard, 2020. "Economic evaluation of photovoltaic and energy storage technologies for future domestic energy systems – A case study of the UK," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7566-:d:844063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.