IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8086-d1301177.html
   My bibliography  Save this article

Comparative Analysis and Optimal Operation of an On-Grid and Off-Grid Solar Photovoltaic-Based Electric Vehicle Charging Station

Author

Listed:
  • Andu Dukpa

    (Faculty of Engineering, University of New Brunswick, 15 Dineen Drive, Fredericton, NB E3B 5A3, Canada)

  • Boguslaw Butrylo

    (Faculty of Electrical Engineering, Bialystok University of Technology, ul. Wiejska 45D, 15-351 Bialystok, Poland)

  • Bala Venkatesh

    (Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada)

Abstract

One of the key strategies for decarbonization and green transportation is using electric vehicles (EVs). However, challenges like limited charging infrastructure, EV battery characteristics, and grid integration complexities persist. This study proposes a mixed-integer linear programming (MILP) approach to optimize a grid-connected solar PV-based commercial EV charging station (SPEVCS) with a battery energy storage system (BESS) for profit maximization. The MILP model efficiently manages SPEVCS operations, considering solar power fluctuations, EV charging patterns, and BESS usage. By coordinating charging schedules, grid stability is reinforced, and excess solar power can be lucratively managed. Comparing grid-connected and off-grid SPEVCS scenarios highlights grid integration benefits. Solar power mismatches with optimal charging periods pose a challenge, addressed here by BESS utilization and import/export of deficit/surplus power from/to the grid. The proposed framework incorporates solar power forecasts and probabilistic EV arrival predictions, enhancing decision accuracy. This approach fosters viable commercial EV charging, promotes green transportation, and reinforces grid resilience.

Suggested Citation

  • Andu Dukpa & Boguslaw Butrylo & Bala Venkatesh, 2023. "Comparative Analysis and Optimal Operation of an On-Grid and Off-Grid Solar Photovoltaic-Based Electric Vehicle Charging Station," Energies, MDPI, vol. 16(24), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8086-:d:1301177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8086/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8086/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yunyan Li & Yuansheng Huang & Meimei Zhang, 2018. "Short-Term Load Forecasting for Electric Vehicle Charging Station Based on Niche Immunity Lion Algorithm and Convolutional Neural Network," Energies, MDPI, vol. 11(5), pages 1-18, May.
    2. Andu Dukpa & Boguslaw Butrylo, 2022. "MILP-Based Profit Maximization of Electric Vehicle Charging Station Based on Solar and EV Arrival Forecasts," Energies, MDPI, vol. 15(15), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stavros Poniris & Anastasios I. Dounis, 2022. "Electric Vehicle Charging Schedules in Workplace Parking Lots Based on Evolutionary Optimization Algorithm," Energies, MDPI, vol. 16(1), pages 1-16, December.
    2. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    3. Syed Muhammad Ahsan & Hassan Abbas Khan & Sarmad Sohaib & Anas M. Hashmi, 2023. "Optimized Power Dispatch for Smart Building and Electric Vehicles with V2V, V2B and V2G Operations," Energies, MDPI, vol. 16(13), pages 1-15, June.
    4. Sahar Koohfar & Wubeshet Woldemariam & Amit Kumar, 2023. "Performance Comparison of Deep Learning Approaches in Predicting EV Charging Demand," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    5. Bampos, Zafeirios N. & Laitsos, Vasilis M. & Afentoulis, Konstantinos D. & Vagropoulos, Stylianos I. & Biskas, Pantelis N., 2024. "Electric vehicles load forecasting for day-ahead market participation using machine and deep learning methods," Applied Energy, Elsevier, vol. 360(C).
    6. Giacomo Talluri & Gabriele Maria Lozito & Francesco Grasso & Carlos Iturrino Garcia & Antonio Luchetta, 2021. "Optimal Battery Energy Storage System Scheduling within Renewable Energy Communities," Energies, MDPI, vol. 14(24), pages 1-23, December.
    7. Liu, Jin-peng & Zhang, Teng-xi & Zhu, Jiang & Ma, Tian-nan, 2018. "Allocation optimization of electric vehicle charging station (EVCS) considering with charging satisfaction and distributed renewables integration," Energy, Elsevier, vol. 164(C), pages 560-574.
    8. Gilanifar, Mostafa & Parvania, Masood, 2021. "Clustered multi-node learning of electric vehicle charging flexibility," Applied Energy, Elsevier, vol. 282(PB).
    9. João Fausto L. de Oliveira & Paulo S. G. de Mattos Neto & Hugo Valadares Siqueira & Domingos S. de O. Santos & Aranildo R. Lima & Francisco Madeiro & Douglas A. P. Dantas & Mariana de Morais Cavalcant, 2023. "Forecasting Methods for Photovoltaic Energy in the Scenario of Battery Energy Storage Systems: A Comprehensive Review," Energies, MDPI, vol. 16(18), pages 1-20, September.
    10. Giampaolo Manzolini & Andrea Fusco & Domenico Gioffrè & Silvana Matrone & Riccardo Ramaschi & Marios Saleptsis & Riccardo Simonetti & Filip Sobic & Michael James Wood & Emanuele Ogliari & Sonia Leva, 2024. "Impact of PV and EV Forecasting in the Operation of a Microgrid," Forecasting, MDPI, vol. 6(3), pages 1-25, July.
    11. Peng Guo & Jian Fu & XiYun Yang, 2018. "Condition Monitoring and Fault Diagnosis of Wind Turbines Gearbox Bearing Temperature Based on Kolmogorov-Smirnov Test and Convolutional Neural Network Model," Energies, MDPI, vol. 11(9), pages 1-16, August.
    12. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    13. Golsefidi, Atefeh Hemmati & Hüttel, Frederik Boe & Peled, Inon & Samaranayake, Samitha & Pereira, Francisco Câmara, 2023. "A joint machine learning and optimization approach for incremental expansion of electric vehicle charging infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    14. Xiang Liao & Beibei Qian & Zhiqiang Jiang & Bo Fu & Hui He, 2023. "Integrated Energy Station Optimal Dispatching Using a Novel Many-Objective Optimization Algorithm Based on Multiple Update Strategies," Energies, MDPI, vol. 16(13), pages 1-26, July.
    15. Kenji Araki & Yasuyuki Ota & Anju Maeda & Minoru Kumano & Kensuke Nishioka, 2023. "Solar Electric Vehicles as Energy Sources in Disaster Zones: Physical and Social Factors," Energies, MDPI, vol. 16(8), pages 1-25, April.
    16. Namhyun Ahn & So Yeon Jo & Suk-Ju Kang, 2019. "Constraint-Aware Electricity Consumption Estimation for Prevention of Overload by Electric Vehicle Charging Station," Energies, MDPI, vol. 12(6), pages 1-18, March.
    17. Sanchari Deb, 2021. "Machine Learning for Solving Charging Infrastructure Planning Problems: A Comprehensive Review," Energies, MDPI, vol. 14(23), pages 1-19, November.
    18. Yvenn Amara-Ouali & Yannig Goude & Pascal Massart & Jean-Michel Poggi & Hui Yan, 2021. "A Review of Electric Vehicle Load Open Data and Models," Energies, MDPI, vol. 14(8), pages 1-35, April.
    19. Yunsun Kim & Sahm Kim, 2021. "Forecasting Charging Demand of Electric Vehicles Using Time-Series Models," Energies, MDPI, vol. 14(5), pages 1-16, March.
    20. Andu Dukpa & Boguslaw Butrylo, 2022. "MILP-Based Profit Maximization of Electric Vehicle Charging Station Based on Solar and EV Arrival Forecasts," Energies, MDPI, vol. 15(15), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8086-:d:1301177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.