IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v201y2020ics0360544220306952.html
   My bibliography  Save this article

Small wind turbine augmentation: Numerical investigations of shrouded- and twin-rotor wind turbines

Author

Listed:
  • Lipian, Michal
  • Dobrev, Ivan
  • Massouh, Fawaz
  • Jozwik, Krzysztof

Abstract

The outcomes of research in increased-efficiency wind energy converters – twin-rotor- and shrouded wind turbines – are presented. The results of URANS simulations for various configurations of single- and twin-rotor, bare and shrouded machines are evaluated. A Fully-resolved Rotor Model with a sliding mesh approach was implemented into ANSYS CFX. A good correlation with the experimental data was shown. The model was used in a general study of the flow nature in the rotor plane, notably velocity fields. The distribution of aerodynamic forces on the blades, which permitted the aerodynamic force (lift and drag) coefficients to be determined in a reverse-BET procedure and to see how the shrouding modifies blade tip losses, was also analysed.

Suggested Citation

  • Lipian, Michal & Dobrev, Ivan & Massouh, Fawaz & Jozwik, Krzysztof, 2020. "Small wind turbine augmentation: Numerical investigations of shrouded- and twin-rotor wind turbines," Energy, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220306952
    DOI: 10.1016/j.energy.2020.117588
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220306952
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shuhei Takahashi & Yuya Hata & Yuji Ohya & Takashi Karasudani & Takanori Uchida, 2012. "Behavior of the Blade Tip Vortices of a Wind Turbine Equipped with a Brimmed-Diffuser Shroud," Energies, MDPI, vol. 5(12), pages 1-14, December.
    2. Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
    3. Lipian, Michal & Dobrev, Ivan & Karczewski, Maciej & Massouh, Fawaz & Jozwik, Krzysztof, 2019. "Small wind turbine augmentation: Experimental investigations of shrouded- and twin-rotor wind turbine systems," Energy, Elsevier, vol. 186(C).
    4. Rahimi, H. & Schepers, J.G. & Shen, W.Z. & García, N. Ramos & Schneider, M.S. & Micallef, D. & Ferreira, C.J. Simao & Jost, E. & Klein, L. & Herráez, I., 2018. "Evaluation of different methods for determining the angle of attack on wind turbine blades with CFD results under axial inflow conditions," Renewable Energy, Elsevier, vol. 125(C), pages 866-876.
    5. Bontempo, R. & Manna, M., 2014. "Performance analysis of open and ducted wind turbines," Applied Energy, Elsevier, vol. 136(C), pages 405-416.
    6. Khamlaj, Tariq Abdulsalam & Rumpfkeil, Markus Peer, 2018. "Analysis and optimization of ducted wind turbines," Energy, Elsevier, vol. 162(C), pages 1234-1252.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Reza Norouztabar & Seyed Soheil Mousavi Ajarostaghi & Seyed Sina Mousavi & Payam Nejat & Seyed Saeid Rahimian Koloor & Mohamed Eldessouki, 2022. "On the Performance of a Modified Triple Stack Blade Savonius Wind Turbine as a Function of Geometrical Parameters," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    3. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Majidi, Sahand & Mojaddam, Mohammad, 2023. "Experimental study of the effect of the duct on dual co-axial horizontal axis wind turbines and the effect of rotors diameter ratio and distance on increasing power coefficient," Energy, Elsevier, vol. 284(C).
    4. Carré, Aurélien & Gasnier, Pierre & Roux, Émile & Tabourot, Laurent, 2022. "Extending the operating limits and performances of centimetre-scale wind turbines through biomimicry," Applied Energy, Elsevier, vol. 326(C).
    5. Piotr Wiklak & Michal Kulak & Michal Lipian & Damian Obidowski, 2022. "Experimental Investigation of the Cooperation of Wind Turbines," Energies, MDPI, vol. 15(11), pages 1-20, May.
    6. Rahmatian, Mohammad Ali & Nazarian Shahrbabaki, Amin & Moeini, Seyed Peyman, 2023. "Single-objective optimization design of convergent-divergent ducts of ducted wind turbine using RSM and GA, to increase power coefficient of a small-scale horizontal axis wind turbine," Energy, Elsevier, vol. 269(C).
    7. Bontempo, R. & Manna, M., 2020. "Diffuser augmented wind turbines: Review and assessment of theoretical models," Applied Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Leloudas, Stavros N. & Lygidakis, Georgios N. & Eskantar, Alexandros I. & Nikolos, Ioannis K., 2020. "A robust methodology for the design optimization of diffuser augmented wind turbine shrouds," Renewable Energy, Elsevier, vol. 150(C), pages 722-742.
    3. Rivarolo, M. & Freda, A. & Traverso, A., 2020. "Test campaign and application of a small-scale ducted wind turbine with analysis of yaw angle influence," Applied Energy, Elsevier, vol. 279(C).
    4. Silva, Paulo A.S.F. & Tsoutsanis, Panagiotis & Vaz, Jerson R.P. & Macias, Marianela M., 2024. "A comprehensive CFD investigation of tip vortex trajectory in shrouded wind turbines using compressible RANS solver," Energy, Elsevier, vol. 294(C).
    5. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Mojaddam, Mohammad & Majidi, Sahand, 2022. "Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine," Energy, Elsevier, vol. 245(C).
    6. Abdel Hameed, Hossam S. & Hashem, Islam & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Shape optimization of a shrouded Archimedean-spiral type wind turbine for small-scale applications," Energy, Elsevier, vol. 263(PB).
    7. Hamid, Hossam & Mohamed Abd El Maksoud, Rafea, 2024. "An optimization study of passive flow control mechanism for a seashell-shaped wind turbine," Energy, Elsevier, vol. 289(C).
    8. Sridhar, Surya & Zuber, Mohammad & B., Satish Shenoy & Kumar, Amit & Ng, Eddie Y.K. & Radhakrishnan, Jayakrishnan, 2022. "Aerodynamic comparison of slotted and non-slotted diffuser casings for Diffuser Augmented Wind Turbines (DAWT)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Shahzad Ali, Qazi & Kim, Man-Hoe, 2022. "Quantifying impacts of shell augmentation on power output of airborne wind energy system at elevated heights," Energy, Elsevier, vol. 239(PA).
    10. Koichi Watanabe & Yuji Ohya & Takanori Uchida, 2019. "Power Output Enhancement of a Ducted Wind Turbine by Stabilizing Vortices around the Duct," Energies, MDPI, vol. 12(16), pages 1-17, August.
    11. Mohammad Hassan Ranjbar & Behnam Rafiei & Seyyed Abolfazl Nasrazadani & Kobra Gharali & Madjid Soltani & Armughan Al-Haq & Jatin Nathwani, 2021. "Power Enhancement of a Vertical Axis Wind Turbine Equipped with an Improved Duct," Energies, MDPI, vol. 14(18), pages 1-16, September.
    12. Rahmatian, Mohammad Ali & Nazarian Shahrbabaki, Amin & Moeini, Seyed Peyman, 2023. "Single-objective optimization design of convergent-divergent ducts of ducted wind turbine using RSM and GA, to increase power coefficient of a small-scale horizontal axis wind turbine," Energy, Elsevier, vol. 269(C).
    13. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    14. Mann, Harjeet S. & Singh, Pradeep K., 2020. "Energy recovery ducted turbine (ERDT) system for chimney flue gases - A CFD based analysis to study the effect of number of blade and diffuser angle," Energy, Elsevier, vol. 213(C).
    15. Saleem, Arslan & Kim, Man-Hoe, 2019. "Performance of buoyant shell horizontal axis wind turbine under fluctuating yaw angles," Energy, Elsevier, vol. 169(C), pages 79-91.
    16. Koichi Watanabe & Yuji Ohya, 2021. "A Simple Theory and Performance Prediction for a Shrouded Wind Turbine with a Brimmed Diffuser," Energies, MDPI, vol. 14(12), pages 1-15, June.
    17. Bontempo, R. & Manna, M., 2020. "Diffuser augmented wind turbines: Review and assessment of theoretical models," Applied Energy, Elsevier, vol. 280(C).
    18. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Majidi, Sahand & Mojaddam, Mohammad, 2023. "Experimental study of the effect of the duct on dual co-axial horizontal axis wind turbines and the effect of rotors diameter ratio and distance on increasing power coefficient," Energy, Elsevier, vol. 284(C).
    19. Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
    20. Anagnostopoulos, Sokratis J. & Bauer, Jens & Clare, Mariana C.A. & Piggott, Matthew D., 2023. "Accelerated wind farm yaw and layout optimisation with multi-fidelity deep transfer learning wake models," Renewable Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220306952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.