IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v217y2018icp241-248.html
   My bibliography  Save this article

A counter-flow-based dual-electrolyte protocol for multiple electrochemical applications

Author

Listed:
  • Lu, Xu
  • Wang, Yifei
  • Leung, Dennis Y.C.
  • Xuan, Jin
  • Wang, Huizhi

Abstract

This paper reports a computational demonstration and analysis of an innovative counter-flow-based microfluidic unit and its upscaling network, which is compatible with previously developed dual-electrolyte protocols and numerous other electrochemical applications. This design consists of multidimensional T-shaped microchannels that allow the effective formation of primary and secondary counter-flow patterns, which are beneficial for both high-performance regenerative H2/O2 redox cells and flow batteries at a low electrolyte flow-rate operation. This novel design demonstrates the potential to achieve high overall energy throughput and reactivity because of the full utilization of all available reaction sites. A computational study on energy and pressure loss mechanism during scale-out is also examined, thereby advancing the realization of an economical electrolyte-recycling scheme.

Suggested Citation

  • Lu, Xu & Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2018. "A counter-flow-based dual-electrolyte protocol for multiple electrochemical applications," Applied Energy, Elsevier, vol. 217(C), pages 241-248.
  • Handle: RePEc:eee:appene:v:217:y:2018:i:c:p:241-248
    DOI: 10.1016/j.apenergy.2018.02.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191830268X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yifei & Leung, Dennis Y.C. & Zhang, Hao & Xuan, Jin & Wang, Huizhi, 2017. "Numerical and experimental comparative study of microfluidic fuel cells with different flow configurations: Co-flow vs. counter-flow cell," Applied Energy, Elsevier, vol. 203(C), pages 535-548.
    2. Ismail, M.S. & Ingham, D.B. & Hughes, K.J. & Ma, L. & Pourkashanian, M., 2014. "An efficient mathematical model for air-breathing PEM fuel cells," Applied Energy, Elsevier, vol. 135(C), pages 490-503.
    3. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    4. Lu, Xu & Leung, Dennis Y.C. & Wang, Huizhi & Maroto-Valer, M. Mercedes & Xuan, Jin, 2016. "A pH-differential dual-electrolyte microfluidic electrochemical cells for CO2 utilization," Renewable Energy, Elsevier, vol. 95(C), pages 277-285.
    5. Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.
    6. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    7. Xu, Hong & Zhang, Hao & Wang, Huizhi & Leung, Dennis Y.C. & Zhang, Li & Cao, Jun & Jiao, Kui & Xuan, Jin, 2015. "Counter-flow formic acid microfluidic fuel cell with high fuel utilization exceeding 90%," Applied Energy, Elsevier, vol. 160(C), pages 930-936.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Baoxin & Xu, Xinhai & Dong, Guangzhong & Zhang, Mingming & Luo, Shijing & Leung, Dennis Y.C. & Wang, Yifei, 2024. "Computational modeling studies on microfluidic fuel cell: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Samir De, Biswajit & Cunningham, Joshua & Khare, Neeraj & Luo, Jing-Li & Elias, Anastasia & Basu, Suddhasatwa, 2022. "Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application," Applied Energy, Elsevier, vol. 305(C).
    3. Muhammad Tanveer & Kwang-Yong Kim, 2021. "Flow Configurations of Membraneless Microfluidic Fuel Cells: A Review," Energies, MDPI, vol. 14(12), pages 1-33, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouyang, Tiancheng & Lu, Jie & Xu, Peihang & Hu, Xiaoyi & Chen, Jingxian, 2022. "High-efficiency fuel utilization innovation in microfluidic fuel cells: From liquid-feed to vapor-feed," Energy, Elsevier, vol. 240(C).
    2. Bao, Zhiming & Niu, Zhiqiang & Jiao, Kui, 2020. "Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 280(C).
    3. Lu, Xu & Leung, Dennis Y.C. & Wang, Huizhi & Xuan, Jin, 2018. "Microfluidics-based pH-differential reactor for CO2 utilization: A mathematical study," Applied Energy, Elsevier, vol. 227(C), pages 525-532.
    4. Samir De, Biswajit & Cunningham, Joshua & Khare, Neeraj & Luo, Jing-Li & Elias, Anastasia & Basu, Suddhasatwa, 2022. "Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application," Applied Energy, Elsevier, vol. 305(C).
    5. Li, Li & Xu, Qiang & Xie, Yajun & Wang, Xiaochun & Zhu, Kai & Zheng, Keqing & Li, Xinyu & Huang, Haocheng & Huang, Yugang & Bei, Shaoyi, 2024. "Narrow middle channel design in counter-flow microfluidic fuel cell with flow-through electrodes," Energy, Elsevier, vol. 288(C).
    6. Li, Li & Fan, Wenguang & Xuan, Jin & Leung, Michael K.H. & Zheng, Keqing & She, Yiyi, 2017. "Optimal design of current collectors for microfluidic fuel cell with flow-through porous electrodes: Model and experiment," Applied Energy, Elsevier, vol. 206(C), pages 413-424.
    7. Pitchai Ragupathy & Santoshkumar Dattatray Bhat & Nallathamby Kalaiselvi, 2023. "Electrochemical energy storage and conversion: An overview," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    8. Wu, Baoxin & Xu, Xinhai & Dong, Guangzhong & Zhang, Mingming & Luo, Shijing & Leung, Dennis Y.C. & Wang, Yifei, 2024. "Computational modeling studies on microfluidic fuel cell: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    9. Singh, Rahul & Polu, Anji Reddy & Bhattacharya, B. & Rhee, Hee-Woo & Varlikli, Canan & Singh, Pramod K., 2016. "Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1098-1117.
    10. Li, Li & Wang, Hongkang & Bei, Shaoyi & Li, Yuanjiang & Sun, Yanyun & Zheng, Keqing & Xu, Qiang, 2023. "Unsymmetrical design and operation in counter-flow microfluidic fuel cell: A prospective study," Energy, Elsevier, vol. 262(PB).
    11. Zhang, Jikai & Wang, Changjian & Zhang, Aifeng, 2022. "Experimental study on temperature and performance of an open-cathode PEMFC stack under thermal radiation environment," Applied Energy, Elsevier, vol. 311(C).
    12. Lan, Qiao & Ye, Dingding & Zhu, Xun & Chen, Rong & Liao, Qiang, 2022. "Enhanced gas removal and cell performance of a microfluidic fuel cell by a paper separator embedded in the microchannel," Energy, Elsevier, vol. 239(PB).
    13. Kurnia, Jundika C. & Chaedir, Benitta A. & Sasmito, Agus P. & Shamim, Tariq, 2021. "Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions," Applied Energy, Elsevier, vol. 283(C).
    14. Myo-Eun Kim & Young-Jun Sohn, 2020. "Study on Polymer Electrolyte Fuel Cells with Nonhumidification Using Metal Foam in Dead-Ended Operation," Energies, MDPI, vol. 13(5), pages 1-12, March.
    15. Muhammad Tanveer & Kwang-Yong Kim, 2021. "Flow Configurations of Membraneless Microfluidic Fuel Cells: A Review," Energies, MDPI, vol. 14(12), pages 1-33, June.
    16. Amamou, A. & Kandidayeni, M. & Boulon, L. & Kelouwani, S., 2018. "Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 216(C), pages 21-30.
    17. Fu, Ya-Lu & Zhang, Biao & Zhu, Xun & Ye, Ding-Ding & Sui, Pang-Chieh & Djilali, Ned, 2020. "Pore-scale modeling of oxygen transport in the catalyst layer of air-breathing cathode in membraneless microfluidic fuel cells," Applied Energy, Elsevier, vol. 277(C).
    18. Zuria, Alonso Moreno & Abrego-Martinez, Juan Carlos & Sun, Shuhui & Mohamedi, Mohamed, 2020. "Prospects of membraneless mixed-reactant microfluidic fuel cells: Evolution through numerical simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    20. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:217:y:2018:i:c:p:241-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.