IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v211y2018icp113-125.html
   My bibliography  Save this article

Energy-efficient HVAC management using cooperative, self-trained, control agents: A real-life German building case study

Author

Listed:
  • Michailidis, Iakovos T.
  • Schild, Thomas
  • Sangi, Roozbeh
  • Michailidis, Panagiotis
  • Korkas, Christos
  • Fütterer, Johannes
  • Müller, Dirk
  • Kosmatopoulos, Elias B.

Abstract

A variety of novel, recyclable and reusable, construction materials has already been studied within literature during the past years, aiming at improving the overall energy efficiency ranking of the building envelope. However, several studies show that a delicate control of indoor climating elements can lead to a significant performance improvement by exploiting the building’s savings potential via smart adaptive HVAC regulation to exogenous uncertain disturbances (e.g. weather, occupancy). Building Optimization and Control (BOC) systems can be categorized into two different groups: centralized (requiring high data transmission rates at a central node from every corner of the overall system) and decentralized1The terms “decentralized”, “distributed” and “agent-based” are considered to have similar meanings herein.1 (assuming an intercommunication among neighboring constituent systems). Moreover, both approaches can be further divided into two subcategories, respectively: model-assisted (usually introducing modeling oversimplifications) and model-free (typically presenting poor stability and very slow convergence rates). This paper presents the application of a novel, decentralized, agent-based, model-free BOC methodology (abbreviated as L4GPCAO) to a modern non-residential building (E.ON. Energy Research Center’s main building), equipped with controllable HVAC systems and renewable energy sources by utilizing the existing Building Management System (BES). The building testbed is located inside the RWTH Aachen University campus in Aachen, Germany. A combined rule criterion composed of the non-renewable energy consumption (NREC) and the thermal comfort index – aligned to international comfort standards – was adopted in all cases presented herein. Besides the limited availability of the specified building testbed, real-life experiments demonstrated operational effectiveness of the proposed approach in BOC applications with complex, emerging dynamics arising from the building’s occupancy and thermal characteristics. L4GPCAO outperformed the control strategy that was designed by the planers and system provider, in a conventional manner, requiring no more than five test days.

Suggested Citation

  • Michailidis, Iakovos T. & Schild, Thomas & Sangi, Roozbeh & Michailidis, Panagiotis & Korkas, Christos & Fütterer, Johannes & Müller, Dirk & Kosmatopoulos, Elias B., 2018. "Energy-efficient HVAC management using cooperative, self-trained, control agents: A real-life German building case study," Applied Energy, Elsevier, vol. 211(C), pages 113-125.
  • Handle: RePEc:eee:appene:v:211:y:2018:i:c:p:113-125
    DOI: 10.1016/j.apenergy.2017.11.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917316318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.11.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Široký, Jan & Oldewurtel, Frauke & Cigler, Jiří & Prívara, Samuel, 2011. "Experimental analysis of model predictive control for an energy efficient building heating system," Applied Energy, Elsevier, vol. 88(9), pages 3079-3087.
    2. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    3. Costa, Andrea & Keane, Marcus M. & Torrens, J. Ignacio & Corry, Edward, 2013. "Building operation and energy performance: Monitoring, analysis and optimisation toolkit," Applied Energy, Elsevier, vol. 101(C), pages 310-316.
    4. Kim, Sean Hay, 2013. "An evaluation of robust controls for passive building thermal mass and mechanical thermal energy storage under uncertainty," Applied Energy, Elsevier, vol. 111(C), pages 602-623.
    5. Orosa, José A. & Oliveira, Armando C., 2012. "A field study on building inertia and its effects on indoor thermal environment," Renewable Energy, Elsevier, vol. 37(1), pages 89-96.
    6. Ürge-Vorsatz, Diana & Cabeza, Luisa F. & Serrano, Susana & Barreneche, Camila & Petrichenko, Ksenia, 2015. "Heating and cooling energy trends and drivers in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 85-98.
    7. Olofsson, Thomas & Mahlia, T.M.I., 2012. "Modeling and simulation of the energy use in an occupied residential building in cold climate," Applied Energy, Elsevier, vol. 91(1), pages 432-438.
    8. Ben-Nakhi, Abdullatif E. & Mahmoud, Mohamed A., 2002. "Energy conservation in buildings through efficient A/C control using neural networks," Applied Energy, Elsevier, vol. 73(1), pages 5-23, September.
    9. Žáčeková, Eva & Váňa, Zdeněk & Cigler, Jiří, 2014. "Towards the real-life implementation of MPC for an office building: Identification issues," Applied Energy, Elsevier, vol. 135(C), pages 53-62.
    10. Baldi, Simone & Michailidis, Iakovos & Ravanis, Christos & Kosmatopoulos, Elias B., 2015. "Model-based and model-free “plug-and-play” building energy efficient control," Applied Energy, Elsevier, vol. 154(C), pages 829-841.
    11. Kusiak, Andrew & Li, Mingyang & Tang, Fan, 2010. "Modeling and optimization of HVAC energy consumption," Applied Energy, Elsevier, vol. 87(10), pages 3092-3102, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    2. Dagmara Kociuba & Maciej Janczak, 2024. "Effects of the Disbursement of EU Cohesion Policy 2014–2020 Funds on Improving the Energy Efficiency of Buildings in Poland and Germany," Energies, MDPI, vol. 17(17), pages 1-23, September.
    3. Iakovos T. Michailidis & Roozbeh Sangi & Panagiotis Michailidis & Thomas Schild & Johannes Fuetterer & Dirk Mueller & Elias B. Kosmatopoulos, 2020. "Balancing Energy Efficiency with Indoor Comfort Using Smart Control Agents: A Simulative Case Study," Energies, MDPI, vol. 13(23), pages 1-28, November.
    4. Su, Bing & Wang, Shengwei, 2020. "An agent-based distributed real-time optimal control strategy for building HVAC systems for applications in the context of future IoT-based smart sensor networks," Applied Energy, Elsevier, vol. 274(C).
    5. Muhammad Saidu Aliero & Muhammad Asif & Imran Ghani & Muhammad Fermi Pasha & Seung Ryul Jeong, 2022. "Systematic Review Analysis on Smart Building: Challenges and Opportunities," Sustainability, MDPI, vol. 14(5), pages 1-28, March.
    6. Panagiotis Michailidis & Paschalis Pelitaris & Christos Korkas & Iakovos Michailidis & Simone Baldi & Elias Kosmatopoulos, 2021. "Enabling Optimal Energy Management with Minimal IoT Requirements: A Legacy A/C Case Study," Energies, MDPI, vol. 14(23), pages 1-25, November.
    7. Baldi, Simone & Korkas, Christos D. & Lv, Maolong & Kosmatopoulos, Elias B., 2018. "Automating occupant-building interaction via smart zoning of thermostatic loads: A switched self-tuning approach," Applied Energy, Elsevier, vol. 231(C), pages 1246-1258.
    8. Esmaeilzadeh, Ahmad & Deal, Brian & Yousefi-Koma, Aghil & Zakerzadeh, Mohammad Reza, 2023. "How combination of control methods and renewable energies leads a large commercial building to a zero-emission zone – A case study in U.S," Energy, Elsevier, vol. 263(PD).
    9. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    10. Charalampos Rafail Lazaridis & Iakovos Michailidis & Georgios Karatzinis & Panagiotis Michailidis & Elias Kosmatopoulos, 2024. "Evaluating Reinforcement Learning Algorithms in Residential Energy Saving and Comfort Management," Energies, MDPI, vol. 17(3), pages 1-33, January.
    11. Temitope Omotayo & Alireza Moghayedi & Bankole Awuzie & Saheed Ajayi, 2021. "Infrastructure Elements for Smart Campuses: A Bibliometric Analysis," Sustainability, MDPI, vol. 13(14), pages 1-32, July.
    12. Li, Wenzhuo & Wang, Shengwei, 2020. "A multi-agent based distributed approach for optimal control of multi-zone ventilation systems considering indoor air quality and energy use," Applied Energy, Elsevier, vol. 275(C).
    13. Su, Bing & Wang, Shengwei & Li, Wenzhuo, 2021. "Impacts of uncertain information delays on distributed real-time optimal controls for building HVAC systems deployed on IoT-enabled field control networks," Applied Energy, Elsevier, vol. 300(C).
    14. Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.
    15. Baldi, Simone & Zhang, Fan & Le Quang, Thuan & Endel, Petr & Holub, Ondrej, 2019. "Passive versus active learning in operation and adaptive maintenance of Heating, Ventilation, and Air Conditioning," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Panagiotis Michailidis & Iakovos Michailidis & Socratis Gkelios & Elias Kosmatopoulos, 2024. "Artificial Neural Network Applications for Energy Management in Buildings: Current Trends and Future Directions," Energies, MDPI, vol. 17(3), pages 1-47, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balvís, Eduardo & Sampedro, Óscar & Zaragoza, Sonia & Paredes, Angel & Michinel, Humberto, 2016. "A simple model for automatic analysis and diagnosis of environmental thermal comfort in energy efficient buildings," Applied Energy, Elsevier, vol. 177(C), pages 60-70.
    2. Marinakis, Vangelis & Doukas, Haris & Karakosta, Charikleia & Psarras, John, 2013. "An integrated system for buildings’ energy-efficient automation: Application in the tertiary sector," Applied Energy, Elsevier, vol. 101(C), pages 6-14.
    3. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    4. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    5. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    6. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    7. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    8. James Ogundiran & Ehsan Asadi & Manuel Gameiro da Silva, 2024. "A Systematic Review on the Use of AI for Energy Efficiency and Indoor Environmental Quality in Buildings," Sustainability, MDPI, vol. 16(9), pages 1-30, April.
    9. Lim, Jae-Han & Song, Jin-Hee & Song, Seung-Yeong, 2014. "Development of operational guidelines for thermally activated building system according to heating and cooling load characteristics," Applied Energy, Elsevier, vol. 126(C), pages 123-135.
    10. Khodabakhshian, Mohammad & Feng, Lei & Börjesson, Stefan & Lindgärde, Olof & Wikander, Jan, 2017. "Reducing auxiliary energy consumption of heavy trucks by onboard prediction and real-time optimization," Applied Energy, Elsevier, vol. 188(C), pages 652-671.
    11. Behl, Madhur & Smarra, Francesco & Mangharam, Rahul, 2016. "DR-Advisor: A data-driven demand response recommender system," Applied Energy, Elsevier, vol. 170(C), pages 30-46.
    12. Li, Guannan & Hu, Yunpeng & Chen, Huanxin & Li, Haorong & Hu, Min & Guo, Yabin & Liu, Jiangyan & Sun, Shaobo & Sun, Miao, 2017. "Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions," Applied Energy, Elsevier, vol. 185(P1), pages 846-861.
    13. Akinkunmi Adegbenro & Michael Short & Claudio Angione, 2021. "An Integrated Approach to Adaptive Control and Supervisory Optimisation of HVAC Control Systems for Demand Response Applications," Energies, MDPI, vol. 14(8), pages 1-18, April.
    14. Hu, Mengqi, 2015. "A data-driven feed-forward decision framework for building clusters operation under uncertainty," Applied Energy, Elsevier, vol. 141(C), pages 229-237.
    15. Kusiak, Andrew & Xu, Guanglin, 2012. "Modeling and optimization of HVAC systems using a dynamic neural network," Energy, Elsevier, vol. 42(1), pages 241-250.
    16. Drgoňa, Ján & Picard, Damien & Kvasnica, Michal & Helsen, Lieve, 2018. "Approximate model predictive building control via machine learning," Applied Energy, Elsevier, vol. 218(C), pages 199-216.
    17. Liu, Mingzhe & Ooka, Ryozo & Choi, Wonjun & Ikeda, Shintaro, 2019. "Experimental and numerical investigation of energy saving potential of centralized and decentralized pumping systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Lyons, Ben & O’Dwyer, Edward & Shah, Nilay, 2020. "Model reduction for Model Predictive Control of district and communal heating systems within cooperative energy systems," Energy, Elsevier, vol. 197(C).
    19. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    20. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2020. "Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization," Applied Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:211:y:2018:i:c:p:113-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.