Microclimatic HVAC system for nano painted rooms using PSO based occupancy regression controller
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.127828
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Christina Turley & Margarite Jacoby & Gregory Pavlak & Gregor Henze, 2020. "Development and Evaluation of Occupancy-Aware HVAC Control for Residential Building Energy Efficiency and Occupant Comfort," Energies, MDPI, vol. 13(20), pages 1-30, October.
- Lork, Clement & Li, Wen-Tai & Qin, Yan & Zhou, Yuren & Yuen, Chau & Tushar, Wayes & Saha, Tapan K., 2020. "An uncertainty-aware deep reinforcement learning framework for residential air conditioning energy management," Applied Energy, Elsevier, vol. 276(C).
- Charikleia Anestopoulou & Chrysanthi Efthymiou & Dimitris Kokkonis & Mattheos Santamouris, 2017. "On the development, testing and performance evaluation of energy efficient coatings for buildings," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(3), pages 310-322.
- Chang-Soon Kang & Jong-Il Park & Mignon Park & Jaeho Baek, 2014. "Novel Modeling and Control Strategies for a HVAC System Including Carbon Dioxide Control," Energies, MDPI, vol. 7(6), pages 1-19, June.
- Jakubik, Johannes & Binding, Adrian & Feuerriegel, Stefan, 2021. "Directed particle swarm optimization with Gaussian-process-based function forecasting," European Journal of Operational Research, Elsevier, vol. 295(1), pages 157-169.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cui, Can & Xue, Jing, 2024. "Energy and comfort aware operation of multi-zone HVAC system through preference-inspired deep reinforcement learning," Energy, Elsevier, vol. 292(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
- Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
- Charalampos Rafail Lazaridis & Iakovos Michailidis & Georgios Karatzinis & Panagiotis Michailidis & Elias Kosmatopoulos, 2024. "Evaluating Reinforcement Learning Algorithms in Residential Energy Saving and Comfort Management," Energies, MDPI, vol. 17(3), pages 1-33, January.
- Tungom, Chia E. & Wang, Hong & Beata, Kamuya & Niu, Ben, 2024. "SWOAM: Swarm optimized agents for energy management in grid-interactive connected buildings," Energy, Elsevier, vol. 301(C).
- Mark B. Luther & Igor Martek & Mehdi Amirkhani & Gerhard Zucker, 2022. "Special Issue “Environmental Technology Applications in the Retrofitting of Residential Buildings”," Energies, MDPI, vol. 15(16), pages 1-4, August.
- Wu, Jingda & Huang, Chao & He, Hongwen & Huang, Hailong, 2024. "Confidence-aware reinforcement learning for energy management of electrified vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Lankeshwara, Gayan & Sharma, Rahul & Yan, Ruifeng & Saha, Tapan K., 2022. "Control algorithms to mitigate the effect of uncertainties in residential demand management," Applied Energy, Elsevier, vol. 306(PA).
- Rémy Rigo-Mariani & Alim Yakub, 2024. "Decision Tree Variations and Online Tuning for Real-Time Control of a Building in a Two-Stage Management Strategy," Energies, MDPI, vol. 17(11), pages 1-17, June.
- Song, Yuguang & Xia, Mingchao & Chen, Qifang & Chen, Fangjian, 2023. "A data-model fusion dispatch strategy for the building energy flexibility based on the digital twin," Applied Energy, Elsevier, vol. 332(C).
- Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
- Huang, Yuming & Ge, Bingfeng & Hipel, Keith W. & Fang, Liping & Zhao, Bin & Yang, Kewei, 2023. "Solving the inverse graph model for conflict resolution using a hybrid metaheuristic algorithm," European Journal of Operational Research, Elsevier, vol. 305(2), pages 806-819.
- Vaclav Kaczmarczyk & Zdenek Bradac & Petr Fiedler, 2017. "A Heuristic Algorithm to Compute Multimodal Criterial Function Weights for Demand Management in Residential Areas," Energies, MDPI, vol. 10(7), pages 1-28, July.
- Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2023. "A Bayesian deep-learning framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 348(C).
- Ayas Shaqour & Aya Hagishima, 2022. "Systematic Review on Deep Reinforcement Learning-Based Energy Management for Different Building Types," Energies, MDPI, vol. 15(22), pages 1-27, November.
- Qiu, Dawei & Dong, Zihang & Zhang, Xi & Wang, Yi & Strbac, Goran, 2022. "Safe reinforcement learning for real-time automatic control in a smart energy-hub," Applied Energy, Elsevier, vol. 309(C).
- Antonella Yaacoub & Moez Esseghir & Leila Merghem-Boulahia, 2023. "A Review of Different Methodologies to Study Occupant Comfort and Energy Consumption," Energies, MDPI, vol. 16(4), pages 1-18, February.
- Sameh Mahjoub & Sami Labdai & Larbi Chrifi-Alaoui & Bruno Marhic & Laurent Delahoche, 2023. "Short-Term Occupancy Forecasting for a Smart Home Using Optimized Weight Updates Based on GA and PSO Algorithms for an LSTM Network," Energies, MDPI, vol. 16(4), pages 1-18, February.
- Heidari, Amirreza & Maréchal, François & Khovalyg, Dolaana, 2022. "An occupant-centric control framework for balancing comfort, energy use and hygiene in hot water systems: A model-free reinforcement learning approach," Applied Energy, Elsevier, vol. 312(C).
- Thyago Estrabis & Gabriel Gentil & Raymundo Cordero, 2021. "Development of a Resolver-to-Digital Converter Based on Second-Order Difference Generalized Predictive Control," Energies, MDPI, vol. 14(2), pages 1-22, January.
- Andrés Jonathan Guízar Dena & Miguel Ángel Pascual & Carlos Fernández Bandera, 2021. "Building Energy Model for Mexican Energy Standard Verification Using Physics-Based Open Studio SGSAVE Software Simulation," Sustainability, MDPI, vol. 13(3), pages 1-34, February.
More about this item
Keywords
HVAC system; Occupant estimation; Machine learning; Energy consumption; Nano coating; Setpoint temperature; Thermal comfort;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012227. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.