IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v239y2019icp280-295.html
   My bibliography  Save this article

Optimal design and operation of multi-energy system with load aggregator considering nodal energy prices

Author

Listed:
  • Pan, Guangsheng
  • Gu, Wei
  • Wu, Zhi
  • Lu, Yuping
  • Lu, Shuai

Abstract

This paper proposes a two-stage planning and design method for the multi-energy system (MES), which consists of multiple combined cooling, heating and power (CCHP) systems connected by the district electrical network and district heating/cooling network. In the first stage, the optimal objective is to minimize the annual capital and operating costs of the CCHP systems, as well as to obtain the optimal type and capacity of the equipment using the system parameters and load data. Then, a novel nodal energy pricing strategy is first proposed and calculated using the flow-tracing method. The nodal energy price comprises two parts: (i) nodal producing price and (ii) nodal transmission price. In the second stage, depending on the electrical, heating and cooling prices, a load aggregator (LA) is applied to manage the electrical, heating and cooling loads of the end users using an integrated demand response (IDR) program. The objective of the LA is to minimize the annual consumption expense of the end users and update the loads for the optimization in the first stage. In addition, the IDR program includes electricity-load shifting and flexible electrical, heating/cooling supply. Three cases are presented to demonstrate the effectiveness of the planning and design method and to show the influence of the nodal energy prices on the IDR program as well as the penetration of solar energy based on a reconstructive MES in northern China.

Suggested Citation

  • Pan, Guangsheng & Gu, Wei & Wu, Zhi & Lu, Yuping & Lu, Shuai, 2019. "Optimal design and operation of multi-energy system with load aggregator considering nodal energy prices," Applied Energy, Elsevier, vol. 239(C), pages 280-295.
  • Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:280-295
    DOI: 10.1016/j.apenergy.2019.01.217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919302387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Youngjin & Norford, Leslie K., 2017. "Optimal use of thermal energy storage resources in commercial buildings through price-based demand response considering distribution network operation," Applied Energy, Elsevier, vol. 193(C), pages 308-324.
    2. Samsatli, Sheila & Samsatli, Nouri J., 2018. "A multi-objective MILP model for the design and operation of future integrated multi-vector energy networks capturing detailed spatio-temporal dependencies," Applied Energy, Elsevier, vol. 220(C), pages 893-920.
    3. Li, Hailong & Sun, Qie & Zhang, Qi & Wallin, Fredrik, 2015. "A review of the pricing mechanisms for district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 56-65.
    4. Luo, Lizi & Gu, Wei & Zhang, Xiao-Ping & Cao, Ge & Wang, Weijun & Zhu, Gang & You, Dingjun & Wu, Zhi, 2018. "Optimal siting and sizing of distributed generation in distribution systems with PV solar farm utilized as STATCOM (PV-STATCOM)," Applied Energy, Elsevier, vol. 210(C), pages 1092-1100.
    5. Jin, Ming & Feng, Wei & Marnay, Chris & Spanos, Costas, 2018. "Microgrid to enable optimal distributed energy retail and end-user demand response," Applied Energy, Elsevier, vol. 210(C), pages 1321-1335.
    6. Iria, José & Soares, Filipe & Matos, Manuel, 2018. "Optimal supply and demand bidding strategy for an aggregator of small prosumers," Applied Energy, Elsevier, vol. 213(C), pages 658-669.
    7. Yan, Yi & Zhang, Chenghui & Li, Ke & Wang, Zhen, 2018. "An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1151-1166.
    8. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Integrated heat and power dispatch truly utilizing thermal inertia of district heating network for wind power integration," Applied Energy, Elsevier, vol. 211(C), pages 865-874.
    9. Jin, Ming & Feng, Wei & Liu, Ping & Marnay, Chris & Spanos, Costas, 2017. "MOD-DR: Microgrid optimal dispatch with demand response," Applied Energy, Elsevier, vol. 187(C), pages 758-776.
    10. Lu, Shuai & Gu, Wei & Zhou, Jinhui & Zhang, Xuesong & Wu, Chenyu, 2018. "Coordinated dispatch of multi-energy system with district heating network: Modeling and solution strategy," Energy, Elsevier, vol. 152(C), pages 358-370.
    11. Hawkes, A.D. & Leach, M.A., 2009. "Modelling high level system design and unit commitment for a microgrid," Applied Energy, Elsevier, vol. 86(7-8), pages 1253-1265, July.
    12. Sanaye, Sepehr & Khakpaay, Navid, 2014. "Simultaneous use of MRM (maximum rectangle method) and optimization methods in determining nominal capacity of gas engines in CCHP (combined cooling, heating and power) systems," Energy, Elsevier, vol. 72(C), pages 145-158.
    13. Correa-Florez, Carlos Adrian & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Robust optimization for day-ahead market participation of smart-home aggregators," Applied Energy, Elsevier, vol. 229(C), pages 433-445.
    14. Correa-Florez, Carlos Adrian & Gerossier, Alexis & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Stochastic operation of home energy management systems including battery cycling," Applied Energy, Elsevier, vol. 225(C), pages 1205-1218.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Ming & Feng, Wei & Marnay, Chris & Spanos, Costas, 2018. "Microgrid to enable optimal distributed energy retail and end-user demand response," Applied Energy, Elsevier, vol. 210(C), pages 1321-1335.
    2. Okur, Özge & Heijnen, Petra & Lukszo, Zofia, 2021. "Aggregator’s business models in residential and service sectors: A review of operational and financial aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    4. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    5. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    6. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Mak, Davye & Choi, Dae-Hyun, 2020. "Optimization framework for coordinated operation of home energy management system and Volt-VAR optimization in unbalanced active distribution networks considering uncertainties," Applied Energy, Elsevier, vol. 276(C).
    8. Dutton, Spencer & Marnay, Chris & Feng, Wei & Robinson, Matthew & Mammoli, Andrea, 2019. "Moore vs. Murphy: Tradeoffs between complexity and reliability in distributed energy system scheduling using software-as-a-service," Applied Energy, Elsevier, vol. 238(C), pages 1126-1137.
    9. Zheng, Lingwei & Zhou, Xingqiu & Qiu, Qi & Yang, Lan, 2020. "Day-ahead optimal dispatch of an integrated energy system considering time-frequency characteristics of renewable energy source output," Energy, Elsevier, vol. 209(C).
    10. Konstantakopoulos, Ioannis C. & Barkan, Andrew R. & He, Shiying & Veeravalli, Tanya & Liu, Huihan & Spanos, Costas, 2019. "A deep learning and gamification approach to improving human-building interaction and energy efficiency in smart infrastructure," Applied Energy, Elsevier, vol. 237(C), pages 810-821.
    11. Shen, Lu & Dou, Xiaobo & Long, Huan & Li, Chen & Chen, Kang & Zhou, Ji, 2021. "A collaborative voltage optimization utilizing flexibility of community heating systems for high PV penetration," Energy, Elsevier, vol. 232(C).
    12. Qiao, Zheng & Guo, Qinglai & Sun, Hongbin & Sheng, Tongtian, 2018. "Multi-time period optimized configuration and scheduling of gas storage in gas-fired power plants," Applied Energy, Elsevier, vol. 226(C), pages 924-934.
    13. Alexis Gerossier & Robin Girard & Alexis Bocquet & George Kariniotakis, 2018. "Robust Day-Ahead Forecasting of Household Electricity Demand and Operational Challenges," Energies, MDPI, vol. 11(12), pages 1-18, December.
    14. Faqiry, M. Nazif & Edmonds, Lawryn & Wu, Hongyu & Pahwa, Anil, 2020. "Distribution locational marginal price-based transactive day-ahead market with variable renewable generation," Applied Energy, Elsevier, vol. 259(C).
    15. Wang, Xuan & Jin, Ming & Feng, Wei & Shu, Gequn & Tian, Hua & Liang, Youcai, 2018. "Cascade energy optimization for waste heat recovery in distributed energy systems," Applied Energy, Elsevier, vol. 230(C), pages 679-695.
    16. Frölke, Linde & Sousa, Tiago & Pinson, Pierre, 2022. "A network-aware market mechanism for decentralized district heating systems," Applied Energy, Elsevier, vol. 306(PA).
    17. Pied, Marie & Anjos, Miguel F. & Malhamé, Roland P., 2020. "A flexibility product for electric water heater aggregators on electricity markets," Applied Energy, Elsevier, vol. 280(C).
    18. Xin Liu & Yuzhang Ji & Ziyang Guo & Shufu Yuan & Yongxu Chen & Weijun Zhang, 2023. "Study of Key Parameters and Uncertainties Based on Integrated Energy Systems Coupled with Renewable Energy Sources," Sustainability, MDPI, vol. 15(23), pages 1-29, November.
    19. Jiang, Tuo & Min, Yong & Zhou, Guiping & Chen, Lei & Chen, Qun & Xu, Fei & Luo, Huanhuan, 2021. "Hierarchical dispatch method for integrated heat and power systems considering the heat transfer process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Lv, Chaoxian & Yu, Hao & Li, Peng & Wang, Chengshan & Xu, Xiandong & Li, Shuquan & Wu, Jianzhong, 2019. "Model predictive control based robust scheduling of community integrated energy system with operational flexibility," Applied Energy, Elsevier, vol. 243(C), pages 250-265.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:239:y:2019:i:c:p:280-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.