Synergetic process of condensing heat exchanger and absorption heat pump for waste heat and water recovery from flue gas
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.114401
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Dexin & Bao, Ainan & Kunc, Walter & Liss, William, 2012. "Coal power plant flue gas waste heat and water recovery," Applied Energy, Elsevier, vol. 91(1), pages 341-348.
- Wei, Maolin & Zhao, Xiling & Fu, Lin & Zhang, Shigang, 2017. "Performance study and application of new coal-fired boiler flue gas heat recovery system," Applied Energy, Elsevier, vol. 188(C), pages 121-129.
- Wang, Chaojun & He, Boshu & Sun, Shaoyang & Wu, Ying & Yan, Na & Yan, Linbo & Pei, Xiaohui, 2012. "Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600 MW power plant," Energy, Elsevier, vol. 48(1), pages 196-202.
- Yan, Min & Zhang, Liang & Shi, Yuetao & Zhang, Liqiang & Li, Yuzhong & Ma, Chunyuan, 2018. "A novel boiler cold-end optimisation system based on bypass flue in coal-fired power plants: Heat recovery from wet flue gas," Energy, Elsevier, vol. 152(C), pages 84-94.
- Wang, Chaojun & He, Boshu & Yan, Linbo & Pei, Xiaohui & Chen, Shinan, 2014. "Thermodynamic analysis of a low-pressure economizer based waste heat recovery system for a coal-fired power plant," Energy, Elsevier, vol. 65(C), pages 80-90.
- Han, Xiaoqu & Liu, Ming & Wang, Jinshi & Yan, Junjie & Liu, Jiping & Xiao, Feng, 2014. "Simulation study on lignite-fired power system integrated with flue gas drying and waste heat recovery – Performances under variable power loads coupled with off-design parameters," Energy, Elsevier, vol. 76(C), pages 406-418.
- Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
- Xu, Gang & Huang, Shengwei & Yang, Yongping & Wu, Ying & Zhang, Kai & Xu, Cheng, 2013. "Techno-economic analysis and optimization of the heat recovery of utility boiler flue gas," Applied Energy, Elsevier, vol. 112(C), pages 907-917.
- Li, Yan & Chang, Shanshan & Fu, Lin & Zhang, Shuyan, 2016. "A technology review on recovering waste heat from the condensers of large turbine units in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 287-296.
- Feeley, Thomas J. & Skone, Timothy J. & Stiegel, Gary J. & McNemar, Andrea & Nemeth, Michael & Schimmoller, Brian & Murphy, James T. & Manfredo, Lynn, 2008. "Water: A critical resource in the thermoelectric power industry," Energy, Elsevier, vol. 33(1), pages 1-11.
- Li, Yuzhong & Yan, Min & Zhang, Liqiang & Chen, Guifang & Cui, Lin & Song, Zhanlong & Chang, Jingcai & Ma, Chunyuan, 2016. "Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery," Applied Energy, Elsevier, vol. 172(C), pages 107-117.
- Espatolero, Sergio & Cortés, Cristóbal & Romeo, Luis M., 2010. "Optimization of boiler cold-end and integration with the steam cycle in supercritical units," Applied Energy, Elsevier, vol. 87(5), pages 1651-1660, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhao, Chunhao & Wang, Zhengfeng & Gao, Dan & Chen, Haiping & Zhang, Heng, 2022. "Simulation and techno-economic analysis of moisture and heat recovery from original flue gas in coal-fired power plants by macroporous ceramic membrane," Energy, Elsevier, vol. 259(C).
- Ma, Hongqiang & Xie, Yue & Duan, Kerun & Song, Xingpeng & Ding, Ruixiang & Hou, Caiqin, 2022. "Dynamic control method of flue gas heat transfer system in the waste heat recovery process," Energy, Elsevier, vol. 259(C).
- Ouyang, Tiancheng & Su, Zixiang & Yang, Rui & Wang, Zhiping & Mo, Xiaoyu & Huang, Haozhong, 2021. "Advanced waste heat harvesting strategy for marine dual-fuel engine considering gas-liquid two-phase flow of turbine," Energy, Elsevier, vol. 224(C).
- Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Wang, Haichao & Wu, Xiaozhou & Liu, Zheyi & Granlund, Katja & Lahdelma, Risto & Li, Ji & Teppo, Esa & Yu, Li & Duamu, Lin & Li, Xiangli & Haavisto, Ilkka, 2021. "Waste heat recovery mechanism for coal-fired flue gas in a counter-flow direct contact scrubber," Energy, Elsevier, vol. 237(C).
- Zhai, Chong & Wu, Wei & Coronas, Alberto, 2021. "Membrane-based absorption cooling and heating: Development and perspectives," Renewable Energy, Elsevier, vol. 177(C), pages 663-688.
- Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
- Ding, Zhixiong & Wu, Wei & Chen, Youming & Leung, Michael, 2020. "Dynamic characteristics and performance improvement of a high-efficiency double-effectthermal battery for cooling and heating," Applied Energy, Elsevier, vol. 264(C).
- Ma, Yuxin & Gao, Enyuan & Zhang, Xiaosong & Huang, Shifang, 2024. "Parametric analysis and design optimization of a fully open absorption heat pump for heat and water recovery of flue gas," Applied Energy, Elsevier, vol. 375(C).
- Lianbo Mu & Suilin Wang & Guichang Liu & Junhui Lu & Yuncheng Lan & Liqiu Zhao & Jincheng Liu, 2023. "On-Site Experimental Study on Low-Temperature Deep Waste Heat Recovery of Actual Flue Gas from the Reformer of Hydrogen Production," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
- Wang, Haichao & Hua, Pengmin & Wu, Xiaozhou & Zhang, Ruoyu & Granlund, Katja & Li, Ji & Zhu, Yingjie & Lahdelma, Risto & Teppo, Esa & Yu, Li, 2022. "Heat-power decoupling and energy saving of the CHP unit with heat pump based waste heat recovery system," Energy, Elsevier, vol. 250(C).
- Li, Zhaohao & Mi, Dabin & Zhang, Heng & Chen, Haiping & Liu, Zhenghao & Gao, Dan, 2021. "Experimental study on synergistic capture of fine particles and waste heat from flue gas using membrane condenser," Energy, Elsevier, vol. 217(C).
- Linbin Huang & Guoqing Chen & Xiang Xu & Rui Tan & Xinglong Gao & Haifeng Zhang & Jie Yu, 2024. "Recovering Low-Grade Heat from Flue Gas in a Coal-Fired Thermal Power Unit," Energies, MDPI, vol. 17(20), pages 1-11, October.
- Ma, Hongqiang & Liang, Nuo & Liu, Yemin & Luo, Xinmei & Hou, Caiqin & Wang, Gang, 2021. "Experimental study on novel waste heat recovery system for sulfide-containing flue gas," Energy, Elsevier, vol. 227(C).
- Jarosław Kabiesz & Robert Kubica, 2024. "Optimizing the Recovery of Latent Heat of Condensation from the Flue Gas Stream through the Combustion of Solid Biomass with a High Moisture Content," Energies, MDPI, vol. 17(7), pages 1-19, April.
- Dagnija Blumberga & Vivita Priedniece & Rūdolfs Rumba & Vladimirs Kirsanovs & Agris Ņikitenko & Egons Lavendelis & Ivars Veidenbergs, 2020. "Mathematical Modeling of Heat and Mass Processes in a Scrubber: The Box–Wilson Optimization Method," Energies, MDPI, vol. 13(9), pages 1-15, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiayou Liu & Xiaoyun Gong & Wenhua Zhang & Fengzhong Sun & Qingbiao Wang, 2020. "Experimental Study on a Flue Gas Waste Heat Cascade Recovery System under Variable Working Conditions," Energies, MDPI, vol. 13(2), pages 1-19, January.
- Xiao, Pengcheng & Zhang, Yanping & Wang, Yuanjing & Wang, Jizhou, 2019. "Analysis of an improved economizer system for active control of the coal-fired boiler flue gas temperature," Energy, Elsevier, vol. 170(C), pages 185-198.
- Lin, Xiaolong & Li, Qinlun & Wang, Lukai & Guo, Yifan & Liu, Yinhe, 2020. "Thermo-economic analysis of typical thermal systems and corresponding novel system for a 1000 MW single reheat ultra-supercritical thermal power plant," Energy, Elsevier, vol. 201(C).
- Ma, Youfu & Wang, Zirui & Lu, Junfu & Yang, Lijuan, 2018. "Techno-economic analysis of a novel hot air recirculation process for exhaust heat recovery from a 600 MW brown-coal-fired boiler," Energy, Elsevier, vol. 152(C), pages 348-357.
- Yan, Min & Zhang, Liang & Shi, Yuetao & Zhang, Liqiang & Li, Yuzhong & Ma, Chunyuan, 2018. "A novel boiler cold-end optimisation system based on bypass flue in coal-fired power plants: Heat recovery from wet flue gas," Energy, Elsevier, vol. 152(C), pages 84-94.
- Ma, Hongqiang & Liang, Nuo & Liu, Yemin & Luo, Xinmei & Hou, Caiqin & Wang, Gang, 2021. "Experimental study on novel waste heat recovery system for sulfide-containing flue gas," Energy, Elsevier, vol. 227(C).
- Jiayou Liu & Fengzhong Sun, 2019. "Node Temperature of the Coupled High-Low Energy Grade Flus Gas Waste Heat Recovery System," Energies, MDPI, vol. 12(2), pages 1-16, January.
- Wei, Maolin & Zhao, Xiling & Fu, Lin & Zhang, Shigang, 2017. "Performance study and application of new coal-fired boiler flue gas heat recovery system," Applied Energy, Elsevier, vol. 188(C), pages 121-129.
- Li, Yuzhong & Yan, Min & Zhang, Liqiang & Chen, Guifang & Cui, Lin & Song, Zhanlong & Chang, Jingcai & Ma, Chunyuan, 2016. "Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery," Applied Energy, Elsevier, vol. 172(C), pages 107-117.
- Wang, Yanhong & Cao, Lihua & Li, Xingcan & Wang, Jiaxing & Hu, Pengfei & Li, Bo & Li, Yong, 2020. "A novel thermodynamic method and insight of heat transfer characteristics on economizer for supercritical thermal power plant," Energy, Elsevier, vol. 191(C).
- Yang, Mei & Liu, Chao, 2017. "The calculation of fluorine plastic economizer in economy by using the equivalent heat drop," Energy, Elsevier, vol. 135(C), pages 674-684.
- Cui, Lin & Song, Xiangda & Li, Yuzhong & Wang, Yang & Feng, Yupeng & Yan, Lifan & Dong, Yong, 2018. "Synergistic capture of fine particles in wet flue gas through cooling and condensation," Applied Energy, Elsevier, vol. 225(C), pages 656-667.
- Zhao, Yulong & Wang, Shixue & Ge, Minghui & Li, Yanzhe & Liang, Zhaojun & Yang, Yurong, 2018. "Performance analysis of a thermoelectric generator applied to wet flue gas waste heat recovery," Applied Energy, Elsevier, vol. 228(C), pages 2080-2089.
- Ma, Youfu & Zhang, Hua & Yuan, Yichao & Wang, Zhiyun, 2015. "Optimization of a lignite-fired open pulverizing system boiler process based on variations in the drying agent composition," Energy, Elsevier, vol. 81(C), pages 304-316.
- Jiayou Liu & Fengzhong Sun, 2019. "Experimental Study on Operation Regulation of a Coupled High–Low Energy Flue Gas Waste Heat Recovery System Based on Exhaust Gas Temperature Control," Energies, MDPI, vol. 12(4), pages 1-20, February.
- Chen, Wei & Shi, Wenxing & Li, Xianting & Wang, Baolong & Cao, Yang, 2020. "Application of optimization method based on discretized thermal energy in condensing heat recovery system of combined heat and power plant," Energy, Elsevier, vol. 213(C).
- Ma, Youfu & Wang, Ziwen & Lyu, Junfu & Wang, Zirui, 2020. "Techno-economic evaluation of the novel hot air recirculation process for exhaust heat recovery from a 600 MW hard-coal-fired boiler," Energy, Elsevier, vol. 200(C).
- Chen, Heng & Wu, Yunyun & Qi, Zhen & Chen, Qiao & Xu, Gang & Yang, Yongping & Liu, Wenyi, 2019. "Improved combustion air preheating design using multiple heat sources incorporating bypass flue in large-scale coal-fired power unit," Energy, Elsevier, vol. 169(C), pages 527-541.
- Feng, Yupeng & Li, Yuzhong & Cui, Lin & Yan, Lifan & Zhao, Cheng & Dong, Yong, 2019. "Cold condensing scrubbing method for fine particle reduction from saturated flue gas," Energy, Elsevier, vol. 171(C), pages 1193-1205.
- Luo, Xianglong & Hu, Jiahao & Zhao, Jun & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2014. "Improved exergoeconomic analysis of a retrofitted natural gas-based cogeneration system," Energy, Elsevier, vol. 72(C), pages 459-475.
More about this item
Keywords
Waste heat recovery; Water recovery; Condensation; Coal-fired power plant; High-humidity flue gas;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919320884. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.