Recovering Low-Grade Heat from Flue Gas in a Coal-Fired Thermal Power Unit
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wei, Maolin & Zhao, Xiling & Fu, Lin & Zhang, Shigang, 2017. "Performance study and application of new coal-fired boiler flue gas heat recovery system," Applied Energy, Elsevier, vol. 188(C), pages 121-129.
- Yan, Min & Zhang, Liang & Shi, Yuetao & Zhang, Liqiang & Li, Yuzhong & Ma, Chunyuan, 2018. "A novel boiler cold-end optimisation system based on bypass flue in coal-fired power plants: Heat recovery from wet flue gas," Energy, Elsevier, vol. 152(C), pages 84-94.
- Wang, Xiang & Zhuo, Jiankun & Liu, Jianmin & Li, Shuiqing, 2020. "Synergetic process of condensing heat exchanger and absorption heat pump for waste heat and water recovery from flue gas," Applied Energy, Elsevier, vol. 261(C).
- Yang, Bo & Yuan, Weixing & Fu, Lin & Zhang, Shigang & Wei, Maolin & Guo, Dongcai, 2020. "Techno-economic study of full-open absorption heat pump applied to flue gas total heat recovery," Energy, Elsevier, vol. 190(C).
- Xu, Gang & Huang, Shengwei & Yang, Yongping & Wu, Ying & Zhang, Kai & Xu, Cheng, 2013. "Techno-economic analysis and optimization of the heat recovery of utility boiler flue gas," Applied Energy, Elsevier, vol. 112(C), pages 907-917.
- Zhang, Guozhu & Zhang, Shunqi & Sun, Bo & Liu, Jiping & Yan, Junjie, 2024. "Design on a novel waste heat recovery system integrated with the bypass flue and outside primary air preheater for bitumite-fired power plants," Energy, Elsevier, vol. 291(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ma, Hongqiang & Liang, Nuo & Liu, Yemin & Luo, Xinmei & Hou, Caiqin & Wang, Gang, 2021. "Experimental study on novel waste heat recovery system for sulfide-containing flue gas," Energy, Elsevier, vol. 227(C).
- Jiayou Liu & Xiaoyun Gong & Wenhua Zhang & Fengzhong Sun & Qingbiao Wang, 2020. "Experimental Study on a Flue Gas Waste Heat Cascade Recovery System under Variable Working Conditions," Energies, MDPI, vol. 13(2), pages 1-19, January.
- Wang, Xiang & Zhuo, Jiankun & Liu, Jianmin & Li, Shuiqing, 2020. "Synergetic process of condensing heat exchanger and absorption heat pump for waste heat and water recovery from flue gas," Applied Energy, Elsevier, vol. 261(C).
- Ma, Yuxin & Gao, Enyuan & Zhang, Xiaosong & Huang, Shifang, 2024. "Parametric analysis and design optimization of a fully open absorption heat pump for heat and water recovery of flue gas," Applied Energy, Elsevier, vol. 375(C).
- Yan, Min & Zhang, Liang & Shi, Yuetao & Zhang, Liqiang & Li, Yuzhong & Ma, Chunyuan, 2018. "A novel boiler cold-end optimisation system based on bypass flue in coal-fired power plants: Heat recovery from wet flue gas," Energy, Elsevier, vol. 152(C), pages 84-94.
- Ma, Hongqiang & Xie, Yue & Duan, Kerun & Song, Xingpeng & Ding, Ruixiang & Hou, Caiqin, 2022. "Dynamic control method of flue gas heat transfer system in the waste heat recovery process," Energy, Elsevier, vol. 259(C).
- Shang, Sheng & Li, Xianting & Chen, Wei & Wang, Baolong & Shi, Wenxing, 2017. "A total heat recovery system between the flue gas and oxidizing air of a gas-fired boiler using a non-contact total heat exchanger," Applied Energy, Elsevier, vol. 207(C), pages 613-623.
- Ramadan, Mohamad & Khaled, Mahmoud & Haddad, Ahmad & Abdulhay, Bakri & Durrant, Andy & El Hage, Hicham, 2018. "An inhouse code for simulating heat recovery from boilers to heat water," Energy, Elsevier, vol. 157(C), pages 200-210.
- Ming Yang & Liqiang Duan & Yongjing Tong, 2021. "Design and Performance Analysis of New Ultra-Supercritical Double Reheat Coal-Fired Power Generation Systems," Energies, MDPI, vol. 14(1), pages 1-22, January.
- Wang, Haichao & Hua, Pengmin & Wu, Xiaozhou & Zhang, Ruoyu & Granlund, Katja & Li, Ji & Zhu, Yingjie & Lahdelma, Risto & Teppo, Esa & Yu, Li, 2022. "Heat-power decoupling and energy saving of the CHP unit with heat pump based waste heat recovery system," Energy, Elsevier, vol. 250(C).
- Jarosław Kabiesz & Robert Kubica, 2024. "Optimizing the Recovery of Latent Heat of Condensation from the Flue Gas Stream through the Combustion of Solid Biomass with a High Moisture Content," Energies, MDPI, vol. 17(7), pages 1-19, April.
- Cui, Lin & Song, Xiangda & Li, Yuzhong & Wang, Yang & Feng, Yupeng & Yan, Lifan & Dong, Yong, 2018. "Synergistic capture of fine particles in wet flue gas through cooling and condensation," Applied Energy, Elsevier, vol. 225(C), pages 656-667.
- Xiao, Pengcheng & Zhang, Yanping & Wang, Yuanjing & Wang, Jizhou, 2019. "Analysis of an improved economizer system for active control of the coal-fired boiler flue gas temperature," Energy, Elsevier, vol. 170(C), pages 185-198.
- Zhao, Yulong & Wang, Shixue & Ge, Minghui & Li, Yanzhe & Liang, Zhaojun & Yang, Yurong, 2018. "Performance analysis of a thermoelectric generator applied to wet flue gas waste heat recovery," Applied Energy, Elsevier, vol. 228(C), pages 2080-2089.
- Jiayou Liu & Fengzhong Sun, 2019. "Experimental Study on Operation Regulation of a Coupled High–Low Energy Flue Gas Waste Heat Recovery System Based on Exhaust Gas Temperature Control," Energies, MDPI, vol. 12(4), pages 1-20, February.
- Chen, Wei & Shi, Wenxing & Li, Xianting & Wang, Baolong & Cao, Yang, 2020. "Application of optimization method based on discretized thermal energy in condensing heat recovery system of combined heat and power plant," Energy, Elsevier, vol. 213(C).
- Ma, Youfu & Wang, Ziwen & Lyu, Junfu & Wang, Zirui, 2020. "Techno-economic evaluation of the novel hot air recirculation process for exhaust heat recovery from a 600 MW hard-coal-fired boiler," Energy, Elsevier, vol. 200(C).
- Wang, Yanhong & Cao, Lihua & Li, Xingcan & Wang, Jiaxing & Hu, Pengfei & Li, Bo & Li, Yong, 2020. "A novel thermodynamic method and insight of heat transfer characteristics on economizer for supercritical thermal power plant," Energy, Elsevier, vol. 191(C).
- Lin, Xiaolong & Li, Qinlun & Wang, Lukai & Guo, Yifan & Liu, Yinhe, 2020. "Thermo-economic analysis of typical thermal systems and corresponding novel system for a 1000 MW single reheat ultra-supercritical thermal power plant," Energy, Elsevier, vol. 201(C).
- Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
More about this item
Keywords
waste heat utilization; air preheater bypass; heat pump; exergy efficiency; coal consumption rate;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5204-:d:1502126. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.