IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v375y2024ics0306261924015277.html
   My bibliography  Save this article

Parametric analysis and design optimization of a fully open absorption heat pump for heat and water recovery of flue gas

Author

Listed:
  • Ma, Yuxin
  • Gao, Enyuan
  • Zhang, Xiaosong
  • Huang, Shifang

Abstract

The fully open absorption heat pump (FOAHP) is a novel approach for recovering and reusing waste heat and water from flue gas. By employing open-type towers in the absorption, regeneration, and condensation processes, the recovery efficiency is substantially enhanced while concurrently lowering system costs. However, as a complex system with multiparameter, nonlinear, and strongly coupled characteristics, research on system design is lacking, which hinders the widespread application of FOAHPs. To address this issue, this study proposes a model-based optimization framework to determine the design parameters of FOAHPs. A physical model of the system was established and utilized to obtain a matrix of system performance parameters for 6700 sets under a wide range of design parameter inputs. The dataset was then adopted to train and verify the data-driven model of the system, which reduced the computational time to 0.085126 s and provided a foundation for global optimization with multiple design parameters. Subsequently, a sensitivity analysis of the design parameters was conducted to elucidate their influence on the system characteristics. Based on data-driven model, the system's design parameters were globally optimized by combining genetic algorithm with the optimization objectives of the coefficient of performance (COP), flue gas recovery efficiency (η), and life cycle benefit (LCB). Results show that the optimized design parameters improved the COP and η of the system from 0.835 and 0.543 to 1.089 and 0.722, respectively, and the LCB from 71,309 USD to 149,843 USD, at which time the system heating capacity increases from 470,102 kWh to 840,182 kWh in one heating season. This study provides a foundational framework and data support for the global multi-objective optimization of the design parameters of FOAHPs.

Suggested Citation

  • Ma, Yuxin & Gao, Enyuan & Zhang, Xiaosong & Huang, Shifang, 2024. "Parametric analysis and design optimization of a fully open absorption heat pump for heat and water recovery of flue gas," Applied Energy, Elsevier, vol. 375(C).
  • Handle: RePEc:eee:appene:v:375:y:2024:i:c:s0306261924015277
    DOI: 10.1016/j.apenergy.2024.124144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924015277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Chunxiao & Li, Dongdong & Wang, Lin & Yang, Qingpo & Guo, Yutao & Zhang, Wei & Shen, Chao & Pu, Jihong, 2024. "Experimental investigation of indoor lighting/thermal environment of liquid-filled energy-saving windows," Renewable Energy, Elsevier, vol. 220(C).
    2. Wang, Xiang & Zhuo, Jiankun & Liu, Jianmin & Li, Shuiqing, 2020. "Synergetic process of condensing heat exchanger and absorption heat pump for waste heat and water recovery from flue gas," Applied Energy, Elsevier, vol. 261(C).
    3. Yang, Bo & Yuan, Weixing & Fu, Lin & Zhang, Shigang & Wei, Maolin & Guo, Dongcai, 2020. "Techno-economic study of full-open absorption heat pump applied to flue gas total heat recovery," Energy, Elsevier, vol. 190(C).
    4. Men, Yiyu & Liu, Xiaohua & Zhang, Tao, 2021. "A review of boiler waste heat recovery technologies in the medium-low temperature range," Energy, Elsevier, vol. 237(C).
    5. Norihiro Moriyama & Akihiro Takeyama & Taichi Yamatoko & Ken-ichi Sawamura & Koji Gonoi & Hiroki Nagasawa & Masakoto Kanezashi & Toshinori Tsuru, 2023. "Steam recovery from flue gas by organosilica membranes for simultaneous harvesting of water and energy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Mu, Lianbo & Wang, Suilin & Lu, Junhui & Liu, Guichang & Zhao, Liqiu & Lan, Yuncheng, 2023. "Effect of flue gas condensing waste heat recovery and its pressure drop on energy saving and carbon reduction for refinery heating furnace," Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haichao & Hua, Pengmin & Wu, Xiaozhou & Zhang, Ruoyu & Granlund, Katja & Li, Ji & Zhu, Yingjie & Lahdelma, Risto & Teppo, Esa & Yu, Li, 2022. "Heat-power decoupling and energy saving of the CHP unit with heat pump based waste heat recovery system," Energy, Elsevier, vol. 250(C).
    2. Jarosław Kabiesz & Robert Kubica, 2024. "Optimizing the Recovery of Latent Heat of Condensation from the Flue Gas Stream through the Combustion of Solid Biomass with a High Moisture Content," Energies, MDPI, vol. 17(7), pages 1-19, April.
    3. Linbin Huang & Guoqing Chen & Xiang Xu & Rui Tan & Xinglong Gao & Haifeng Zhang & Jie Yu, 2024. "Recovering Low-Grade Heat from Flue Gas in a Coal-Fired Thermal Power Unit," Energies, MDPI, vol. 17(20), pages 1-11, October.
    4. Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
    5. Ouyang, Tiancheng & Su, Zixiang & Yang, Rui & Wang, Zhiping & Mo, Xiaoyu & Huang, Haozhong, 2021. "Advanced waste heat harvesting strategy for marine dual-fuel engine considering gas-liquid two-phase flow of turbine," Energy, Elsevier, vol. 224(C).
    6. Ma, Hongqiang & Xie, Yue & Duan, Kerun & Song, Xingpeng & Ding, Ruixiang & Hou, Caiqin, 2022. "Dynamic control method of flue gas heat transfer system in the waste heat recovery process," Energy, Elsevier, vol. 259(C).
    7. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Yousif Mohammed & Gasim Hayder & Sivadass Thiruchelvam & Hamidi Abdul Aziz, 2024. "Evaluating Building Sustainability Rating Systems: Standards and Methodologies for Energy-Water Based Assessment Criteria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4823-4850, September.
    9. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    10. Gómez-Hernández, J. & Grimes, R. & Briongos, J.V. & Marugán-Cruz, C. & Santana, D., 2023. "Carbon dioxide and acetone mixtures as refrigerants for industry heat pumps to supply temperature in the range 150–220 oC," Energy, Elsevier, vol. 269(C).
    11. Ieva Pakere & Dagnija Blumberga & Anna Volkova & Kertu Lepiksaar & Agate Zirne, 2023. "Valorisation of Waste Heat in Existing and Future District Heating Systems," Energies, MDPI, vol. 16(19), pages 1-22, September.
    12. Zhang, Hongsheng & Liu, Xingang & Hao, Ruijun & Liu, Chengjun & Liu, Yifeng & Duan, Chenghong & Qin, Jiyun, 2022. "Thermodynamic performance study on gas-steam cogeneration systems with different configurations based on condensed waste heat utilization," Energy, Elsevier, vol. 250(C).
    13. Ding, Zhixiong & Wu, Wei & Chen, Youming & Leung, Michael, 2020. "Dynamic characteristics and performance improvement of a high-efficiency double-effectthermal battery for cooling and heating," Applied Energy, Elsevier, vol. 264(C).
    14. Lianbo Mu & Suilin Wang & Guichang Liu & Junhui Lu & Yuncheng Lan & Liqiu Zhao & Jincheng Liu, 2023. "On-Site Experimental Study on Low-Temperature Deep Waste Heat Recovery of Actual Flue Gas from the Reformer of Hydrogen Production," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    15. Ma, Hongqiang & Liang, Nuo & Liu, Yemin & Luo, Xinmei & Hou, Caiqin & Wang, Gang, 2021. "Experimental study on novel waste heat recovery system for sulfide-containing flue gas," Energy, Elsevier, vol. 227(C).
    16. Dzierwa, Piotr & Trojan, Marcin & Peret, Patryk & Taler, Jan & Taler, Dawid & Kaczmarski, Karol & Wrobel, Wojciech & Bator, Jakub, 2024. "Technological and economical analysis of the heat recovery system from flue gas in a thermal waste treatment plant," Energy, Elsevier, vol. 307(C).
    17. Nie, Yazhou & Deng, Mengsi & Shan, Ming & Yang, Xudong, 2023. "Clean and low-carbon heating in the building sector of China: 10-Year development review and policy implications," Energy Policy, Elsevier, vol. 179(C).
    18. Zhao, Chunhao & Wang, Zhengfeng & Gao, Dan & Chen, Haiping & Zhang, Heng, 2022. "Simulation and techno-economic analysis of moisture and heat recovery from original flue gas in coal-fired power plants by macroporous ceramic membrane," Energy, Elsevier, vol. 259(C).
    19. Srivastava, Mayank & Sarkar, Jahar & Sarkar, Arnab & Maheshwari, N.K. & Antony, A., 2024. "Thermo-economic feasibility study to utilize ORC technology for waste heat recovery from Indian nuclear power plants," Energy, Elsevier, vol. 298(C).
    20. Robert Ștefan Vizitiu & Ștefănica Eliza Vizitiu & Andrei Burlacu & Chérifa Abid & Marius Costel Balan & Nicoleta Elena Kaba, 2024. "Experimental Investigation of a Water–Air Heat Recovery System," Sustainability, MDPI, vol. 16(17), pages 1-11, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:375:y:2024:i:c:s0306261924015277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.