IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222031759.html
   My bibliography  Save this article

Hybrid IGDT-stochastic self-scheduling of a distributed energy resources aggregator in a multi-energy system

Author

Listed:
  • Vahid-Ghavidel, Morteza
  • Shafie-khah, Miadreza
  • Javadi, Mohammad S.
  • Santos, Sérgio F.
  • Gough, Matthew
  • Quijano, Darwin A.
  • Catalao, Joao P.S.

Abstract

The optimal management of distributed energy resources (DERs) and renewable-based generation in multi-energy systems (MESs) is crucial as it is expected that these entities will be the backbone of future energy systems. To optimally manage these numerous and diverse entities, an aggregator is required. This paper proposes the self-scheduling of a DER aggregator through a hybrid Info-gap Decision Theory (IGDT)-stochastic approach in an MES. In this approach, there are several renewable energy resources such as wind and photovoltaic (PV) units as well as multiple DERs, including combined heat and power (CHP) units, and auxiliary boilers (ABs). The approach also considers an EV parking lot and thermal energy storage systems (TESs). Moreover, two demand response (DR) programs from both price-based and incentive-based categories are employed in the microgrid to provide flexibility for the participants. The uncertainty in the generation is addressed through stochastic programming. At the same time, the uncertainty posed by the energy market prices is managed through the application of the IGDT method. A major goal of this model is to choose the risk measure based on the nature and characteristics of the uncertain parameters in the MES. Additionally, the behavior of the risk-averse and risk-seeking decision-makers is also studied. In the first stage, the sole-stochastic results are presented and then, the hybrid stochastic-IGDT results for both risk-averse and risk-seeker decision-makers are discussed. The proposed problem is simulated on the modified IEEE 15-bus system to demonstrate the effectiveness and usefulness of the technique.

Suggested Citation

  • Vahid-Ghavidel, Morteza & Shafie-khah, Miadreza & Javadi, Mohammad S. & Santos, Sérgio F. & Gough, Matthew & Quijano, Darwin A. & Catalao, Joao P.S., 2023. "Hybrid IGDT-stochastic self-scheduling of a distributed energy resources aggregator in a multi-energy system," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222031759
    DOI: 10.1016/j.energy.2022.126289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222031759
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    2. Wang, Yuwei & Tang, Liu & Yang, Yuanjuan & Sun, Wei & Zhao, Huiru, 2020. "A stochastic-robust coordinated optimization model for CCHP micro-grid considering multi-energy operation and power trading with electricity markets under uncertainties," Energy, Elsevier, vol. 198(C).
    3. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Lehtonen, Matti & Leonowicz, Zbigniew, 2021. "A hybrid decentralized stochastic-robust model for optimal coordination of electric vehicle aggregator and energy hub entities," Applied Energy, Elsevier, vol. 304(C).
    4. Chen, Tengpeng & Cao, Yuhao & Qing, Xinlin & Zhang, Jingrui & Sun, Yuhao & Amaratunga, Gehan A.J., 2022. "Multi-energy microgrid robust energy management with a novel decision-making strategy," Energy, Elsevier, vol. 239(PA).
    5. Ata, Mustafa & Erenoğlu, Ayşe Kübra & Şengör, İbrahim & Erdinç, Ozan & Taşcıkaraoğlu, Akın & Catalão, João P.S., 2019. "Optimal operation of a multi-energy system considering renewable energy sources stochasticity and impacts of electric vehicles," Energy, Elsevier, vol. 186(C).
    6. Moser, A. & Muschick, D. & Gölles, M. & Nageler, P. & Schranzhofer, H. & Mach, T. & Ribas Tugores, C. & Leusbrock, I. & Stark, S. & Lackner, F. & Hofer, A., 2020. "A MILP-based modular energy management system for urban multi-energy systems: Performance and sensitivity analysis," Applied Energy, Elsevier, vol. 261(C).
    7. Turk, Ana & Wu, Qiuwei & Zhang, Menglin & Østergaard, Jacob, 2020. "Day-ahead stochastic scheduling of integrated multi-energy system for flexibility synergy and uncertainty balancing," Energy, Elsevier, vol. 196(C).
    8. Lu, Jun & Liu, Tianqi & He, Chuan & Nan, Lu & Hu, Xiaotong, 2021. "Robust day-ahead coordinated scheduling of multi-energy systems with integrated heat-electricity demand response and high penetration of renewable energy," Renewable Energy, Elsevier, vol. 178(C), pages 466-482.
    9. Nasiri, Nima & Zeynali, Saeed & Ravadanegh, Sajad Najafi & Marzband, Mousa, 2021. "A hybrid robust-stochastic approach for strategic scheduling of a multi-energy system as a price-maker player in day-ahead wholesale market," Energy, Elsevier, vol. 235(C).
    10. Shojaei, Amir Hossein & Ghadimi, Ali Asghar & Miveh, Mohammad Reza & Gandoman, Foad H. & Ahmadi, Abdollah, 2021. "Multiobjective reactive power planning considering the uncertainties of wind farms and loads using Information Gap Decision Theory," Renewable Energy, Elsevier, vol. 163(C), pages 1427-1443.
    11. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    12. Yang, Dongfeng & Jiang, Chao & Cai, Guowei & Yang, Deyou & Liu, Xiaojun, 2020. "Interval method based optimal planning of multi-energy microgrid with uncertain renewable generation and demand," Applied Energy, Elsevier, vol. 277(C).
    13. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Lehtonen, Matti & Leonowicz, Zbigniew, 2022. "A medium-term hybrid IGDT-Robust optimization model for optimal self scheduling of multi-carrier energy systems," Energy, Elsevier, vol. 238(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hongze & Li, Xumeng & Zhang, Yuanyuan & Zhao, Yihang & Pan, Jiaqi & Zhao, Huiru, 2024. "Declaration strategy of wind power and pumped storage participating in the power market considering multiple uncertainties," Energy, Elsevier, vol. 293(C).
    2. Xiao, Dongliang & Lin, Zhenjia & Chen, Haoyong & Hua, Weiqi & Yan, Jinyue, 2024. "Windfall profit-aware stochastic scheduling strategy for industrial virtual power plant with integrated risk-seeking/averse preferences," Applied Energy, Elsevier, vol. 357(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najafi, Arsalan & Homaee, Omid & Jasiński, Michał & Pourakbari-Kasmaei, Mahdi & Lehtonen, Matti & Leonowicz, Zbigniew, 2023. "Participation of hydrogen-rich energy hubs in day-ahead and regulation markets: A hybrid stochastic-robust model," Applied Energy, Elsevier, vol. 339(C).
    2. Zheng, Lingwei & Zhou, Xingqiu & Qiu, Qi & Yang, Lan, 2020. "Day-ahead optimal dispatch of an integrated energy system considering time-frequency characteristics of renewable energy source output," Energy, Elsevier, vol. 209(C).
    3. Wang, Yudong & Hu, Junjie, 2023. "Two-stage energy management method of integrated energy system considering pre-transaction behavior of energy service provider and users," Energy, Elsevier, vol. 271(C).
    4. Pereira, Diogo Santos & Marques, António Cardoso, 2020. "How should price-responsive electricity tariffs evolve? An analysis of the German net demand case," Utilities Policy, Elsevier, vol. 66(C).
    5. Navid Rezaei & Abdollah Ahmadi & Mohammadhossein Deihimi, 2022. "A Comprehensive Review of Demand-Side Management Based on Analysis of Productivity: Techniques and Applications," Energies, MDPI, vol. 15(20), pages 1-28, October.
    6. Shiping Geng & Gengqi Wu & Caixia Tan & Dongxiao Niu & Xiaopeng Guo, 2021. "Multi-Objective Optimization of a Microgrid Considering the Uncertainty of Supply and Demand," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    7. Zhang, Bin & Hu, Weihao & Cao, Di & Ghias, Amer M.Y.M. & Chen, Zhe, 2023. "Novel Data-Driven decentralized coordination model for electric vehicle aggregator and energy hub entities in multi-energy system using an improved multi-agent DRL approach," Applied Energy, Elsevier, vol. 339(C).
    8. Gianluca Serale & Luca Gnoli & Emanuele Giraudo & Enrico Fabrizio, 2021. "A Supervisory Control Strategy for Improving Energy Efficiency of Artificial Lighting Systems in Greenhouses," Energies, MDPI, vol. 14(1), pages 1-19, January.
    9. Liu, Zhouding & Nazari-Heris, Morteza, 2023. "Optimal bidding strategy of multi-carrier systems in electricity markets using information gap decision theory," Energy, Elsevier, vol. 280(C).
    10. Aslani, Mehrdad & Mashayekhi, Mehdi & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "Robust optimal operation of energy hub incorporating integrated thermal and electrical demand response programs under various electric vehicle charging modes," Applied Energy, Elsevier, vol. 321(C).
    11. Gao, Jianwei & Meng, Qichen & Liu, Jiangtao & Wang, Ziying, 2024. "Thermoelectric optimization of integrated energy system considering wind-photovoltaic uncertainty, two-stage power-to-gas and ladder-type carbon trading," Renewable Energy, Elsevier, vol. 221(C).
    12. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).
    13. Ouyang, Tiancheng & Zhang, Mingliang & Wu, Wencong & Zhao, Jiaqi & Xu, Hua, 2023. "A day-ahead planning for multi-energy system in building community," Energy, Elsevier, vol. 267(C).
    14. Sushmita Kujur & Hari Mohan Dubey & Surender Reddy Salkuti, 2023. "Demand Response Management of a Residential Microgrid Using Chaotic Aquila Optimization," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    15. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    16. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    17. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    18. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    19. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    20. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222031759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.