IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i12p5016-d1413503.html
   My bibliography  Save this article

Renewable Energy Distributed Energy System Optimal Configuration and Performance Analysis: Improved Zebra Optimization Algorithm

Author

Listed:
  • Zhaoyu Qi

    (Key Laboratory of Environmental Protection in Water Transport Engineering Ministry of Transport, Tianjin Research Institute for Water Transport Engineering, Tianjin 300456, China)

  • Shitao Peng

    (Key Laboratory of Environmental Protection in Water Transport Engineering Ministry of Transport, Tianjin Research Institute for Water Transport Engineering, Tianjin 300456, China)

  • Peisen Wu

    (Key Laboratory of Environmental Protection in Water Transport Engineering Ministry of Transport, Tianjin Research Institute for Water Transport Engineering, Tianjin 300456, China)

  • Ming-Lang Tseng

    (Institute of Innovation and Circular Economy, Asia University, Taichung 41354, Taiwan
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
    UKM-Graduate School of Business, Universiti Kebangsaan Malaysia, Bangi 43000, Selangor, Malaysia
    Department of Industrial Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

Abstract

The use of distributed energy systems (DES) can utilize local resources to achieve flexible and efficient energy production and supply. However, this aspect of pollutant emission reduction has not been sufficiently investigated in current related studies. On this basis, this study establishes a DES system that integrates a ground-source heat pump, a gas turbine, a photovoltaic device and an energy storage device. An Improved Zebra Optimization Algorithm (IZOA) is proposed for optimizing the capacity of DES devices and the energy supply ratio of the ground-source heat pump. Using the economic cost saving rate (ECSR), pollutant emission reduction rate (PERR) and energy saving rate (ESR) as the optimization objectives, the study builds a DES configuration optimization model. By analyzing the arithmetic example of a large hotel building, the study verifies the effectiveness of the IZOA algorithm in solving the DES configuration optimization problem. This study provides useful research ideas in promoting the development of distributed energy systems, environmental protection and energy conservation.

Suggested Citation

  • Zhaoyu Qi & Shitao Peng & Peisen Wu & Ming-Lang Tseng, 2024. "Renewable Energy Distributed Energy System Optimal Configuration and Performance Analysis: Improved Zebra Optimization Algorithm," Sustainability, MDPI, vol. 16(12), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:5016-:d:1413503
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/12/5016/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/12/5016/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ren, Fukang & Lin, Xiaozhen & Wei, Ziqing & Zhai, Xiaoqiang & Yang, Jianrong, 2022. "A novel planning method for design and dispatch of hybrid energy systems," Applied Energy, Elsevier, vol. 321(C).
    2. Zhou, Chunwei & Liu, Gang & Liao, Shengming, 2024. "Probing dominant flow paths in enhanced geothermal systems with a genetic algorithm inversion model," Applied Energy, Elsevier, vol. 360(C).
    3. Yin, Linfei & Tao, Min, 2023. "Balanced broad learning prediction model for carbon emissions of integrated energy systems considering distributed ground source heat pump heat storage systems and carbon capture & storage," Applied Energy, Elsevier, vol. 329(C).
    4. Deng, Yan & Liu, Yicai & Zeng, Rong & Wang, Qianxu & Li, Zheng & Zhang, Yu & Liang, Heng, 2021. "A novel operation strategy based on black hole algorithm to optimize combined cooling, heating, and power-ground source heat pump system," Energy, Elsevier, vol. 229(C).
    5. Huang, Chang & Yan, Yixian & Madonski, Rafal & Zhang, Qi & Deng, Hui, 2023. "Improving operation strategies for solar-based distributed energy systems: Matching system design with operation," Energy, Elsevier, vol. 276(C).
    6. Lee, Chien-Chiang & Yan, Jingyang, 2024. "Will artificial intelligence make energy cleaner? Evidence of nonlinearity," Applied Energy, Elsevier, vol. 363(C).
    7. Moser, A. & Muschick, D. & Gölles, M. & Nageler, P. & Schranzhofer, H. & Mach, T. & Ribas Tugores, C. & Leusbrock, I. & Stark, S. & Lackner, F. & Hofer, A., 2020. "A MILP-based modular energy management system for urban multi-energy systems: Performance and sensitivity analysis," Applied Energy, Elsevier, vol. 261(C).
    8. Huang, Pei & Sun, Yongjun & Lovati, Marco & Zhang, Xingxing, 2021. "Solar-photovoltaic-power-sharing-based design optimization of distributed energy storage systems for performance improvements," Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ling-Ling & Qu, Li-Nan & Tseng, Ming-Lang & Lim, Ming K. & Ren, Xin-Yu & Miao, Yan, 2024. "Optimization and performance assessment of solar-assisted combined cooling, heating and power system systems: Multi-objective gradient-based optimizer," Energy, Elsevier, vol. 289(C).
    2. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    3. Sajjad Ali & Imran Khan & Sadaqat Jan & Ghulam Hafeez, 2021. "An Optimization Based Power Usage Scheduling Strategy Using Photovoltaic-Battery System for Demand-Side Management in Smart Grid," Energies, MDPI, vol. 14(8), pages 1-29, April.
    4. Pérez-Iribarren, E. & González-Pino, I. & Azkorra-Larrinaga, Z. & Gómez-Arriarán, I., 2020. "Optimal design and operation of thermal energy storage systems in micro-cogeneration plants," Applied Energy, Elsevier, vol. 265(C).
    5. Li, Xinyi & Cui, Wei & Simon, Terrence & Ma, Ting & Cui, Tianhong & Wang, Qiuwang, 2021. "Pore-scale analysis on selection of composite phase change materials for photovoltaic thermal management," Applied Energy, Elsevier, vol. 302(C).
    6. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    7. Liu, Jiejie & Li, Yao & Ma, Yanan & Qin, Ruomu & Meng, Xianyang & Wu, Jiangtao, 2023. "Two-layer multiple scenario optimization framework for integrated energy system based on optimal energy contribution ratio strategy," Energy, Elsevier, vol. 285(C).
    8. Manal Elhaj & Jihen Bousrih & Hind Alofaysan, 2024. "Can Technological Advancement Empower the Future of Renewable Energy? A Panel Autoregressive Distributed Lag Approach," Energies, MDPI, vol. 17(20), pages 1-18, October.
    9. Zhu, Xiaochen & Fuli, Wang, 2023. "Energy savings bottleneck diagnosis and optimization decision method for industrial auxiliary system based on energy efficiency gap analysis," Energy, Elsevier, vol. 263(PE).
    10. Jin, Baohong, 2023. "Impact of renewable energy penetration in power systems on the optimization and operation of regional distributed energy systems," Energy, Elsevier, vol. 273(C).
    11. Zhao, Naixin & Gu, Wenbo & Zheng, Zipeng & Ma, Tao, 2023. "Multi-objective bi-level planning of the integrated energy system considering uncertain user loads and carbon emission during the equipment manufacturing process," Renewable Energy, Elsevier, vol. 216(C).
    12. Unterberger, Viktor & Lichtenegger, Klaus & Kaisermayer, Valentin & Gölles, Markus & Horn, Martin, 2021. "An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems," Applied Energy, Elsevier, vol. 293(C).
    13. Lee, Chien-Chiang & Hussain, Jafar & Mu, Xian, 2024. "Renewable energy and carbon-neutral gaming: A holistic approach to sustainable electricity," Energy, Elsevier, vol. 297(C).
    14. Mahmoud, Montaser & Alkhedher, Mohammad & Ramadan, Mohamad & Naher, Sumsun & Pullen, Keith, 2022. "An investigation on organic Rankine cycle incorporating a ground-cooled condenser: Working fluid selection and regeneration," Energy, Elsevier, vol. 249(C).
    15. Dong, Fuxiang & Wang, Jiangjiang & Xu, Hangwei & Zhang, Xutao, 2024. "A robust real-time energy scheduling strategy of integrated energy system based on multi-step interval prediction of uncertainties," Energy, Elsevier, vol. 300(C).
    16. Lee, Chien-Chiang & Yahya, Farzan, 2024. "Mitigating energy instability: The influence of trilemma choices, financial development, and technology advancements," Energy Economics, Elsevier, vol. 133(C).
    17. Vahid-Ghavidel, Morteza & Shafie-khah, Miadreza & Javadi, Mohammad S. & Santos, Sérgio F. & Gough, Matthew & Quijano, Darwin A. & Catalao, Joao P.S., 2023. "Hybrid IGDT-stochastic self-scheduling of a distributed energy resources aggregator in a multi-energy system," Energy, Elsevier, vol. 265(C).
    18. Kerscher, Selina & Koirala, Arpan & Arboleya, Pablo, 2024. "Grid-optimal energy community planning from a systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    19. Qin Wang & Jincan Zeng & Beibei Cheng & Minwei Liu & Guori Huang & Xi Liu & Gengsheng He & Shangheng Yao & Peng Wang & Longxi Li, 2024. "A Cooperative Game Approach for Optimal Design of Shared Energy Storage System," Sustainability, MDPI, vol. 16(17), pages 1-19, August.
    20. Ya-Nan Zhao & Chien-Chiang Lee, 2024. "How does industrial relocation affect carbon emissions? Evidence from Chinese cities," Economic Change and Restructuring, Springer, vol. 57(6), pages 1-33, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:5016-:d:1413503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.