IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v260y2020ics0306261919319312.html
   My bibliography  Save this article

A review of N-functionalized solid adsorbents for post-combustion CO2 capture

Author

Listed:
  • Hu, Xiayi (Eric)
  • Liu, Libin
  • Luo, Xiao
  • Xiao, Gongkui
  • Shiko, Elenica
  • Zhang, Rui
  • Fan, Xianfeng
  • Zhou, Yefeng
  • Liu, Yang
  • Zeng, Zhaogang
  • Li, Chao'en

Abstract

Over the past decade, amine-loaded solid adsorbents for capturing CO2 from power plants have been widely studied. Various nitrogen (N) sources have been used for this purpose, and the current range of adsorbents, referred to here as N-functionalized solid adsorbent (NFSAs), are the subject of this review. The main synthesis methods of NFSAs are described and recent progress in the field discussed. Criteria for improving NFSA performance are highlighted with reference to a variety of solid supports, providing guidance on the selection of highly efficient, inexpensive adsorbents. A thorough assessment of adsorption mechanisms and factors influencing the adsorption process is given. The review concludes by exploring future research and development opportunities, as well as pathways for commercializing NFSAs.

Suggested Citation

  • Hu, Xiayi (Eric) & Liu, Libin & Luo, Xiao & Xiao, Gongkui & Shiko, Elenica & Zhang, Rui & Fan, Xianfeng & Zhou, Yefeng & Liu, Yang & Zeng, Zhaogang & Li, Chao'en, 2020. "A review of N-functionalized solid adsorbents for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319312
    DOI: 10.1016/j.apenergy.2019.114244
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919319312
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114244?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Bingbing & Wang, Xianfeng & Gray, McMahan L. & Duan, Yuhua & Luebke, David & Li, Bingyun, 2013. "Development of amino acid and amino acid-complex based solid sorbents for CO2 capture," Applied Energy, Elsevier, vol. 109(C), pages 112-118.
    2. Mondal, Monoj Kumar & Balsora, Hemant Kumar & Varshney, Prachi, 2012. "Progress and trends in CO2 capture/separation technologies: A review," Energy, Elsevier, vol. 46(1), pages 431-441.
    3. Chen, S.J. & Zhu, M. & Fu, Y. & Huang, Y.X. & Tao, Z.C. & Li, W.L., 2017. "Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas," Applied Energy, Elsevier, vol. 191(C), pages 87-98.
    4. Oh, Se-Young & Kim, Jin-Kuk, 2018. "Operational optimization for part-load performance of amine-based post-combustion CO2 capture processes," Energy, Elsevier, vol. 146(C), pages 57-66.
    5. Wang, Weilong & Li, Jiang & Wei, Xiaolan & Ding, Jing & Feng, Haijun & Yan, Jinyue & Yang, Jianping, 2015. "Carbon dioxide adsorption thermodynamics and mechanisms on MCM-41 supported polyethylenimine prepared by wet impregnation method," Applied Energy, Elsevier, vol. 142(C), pages 221-228.
    6. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    7. Martín, C.F. & Sweatman, M.B. & Brandani, S. & Fan, X., 2016. "Wet impregnation of a commercial low cost silica using DETA for a fast post-combustion CO2 capture process," Applied Energy, Elsevier, vol. 183(C), pages 1705-1721.
    8. Babu, Ponnivalavan & Ong, Hong Wen Nelson & Linga, Praveen, 2016. "A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide," Energy, Elsevier, vol. 94(C), pages 431-442.
    9. Kyungmin Min & Woosung Choi & Chaehoon Kim & Minkee Choi, 2018. "Oxidation-stable amine-containing adsorbents for carbon dioxide capture," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    10. Lai, Qinghua & Diao, Zhijun & Kong, Lingli & Adidharma, Hertanto & Fan, Maohong, 2018. "Amine-impregnated silicic acid composite as an efficient adsorbent for CO2 capture," Applied Energy, Elsevier, vol. 223(C), pages 293-301.
    11. Wang, Meihong & Joel, Atuman S. & Ramshaw, Colin & Eimer, Dag & Musa, Nuhu M., 2015. "Process intensification for post-combustion CO2 capture with chemical absorption: A critical review," Applied Energy, Elsevier, vol. 158(C), pages 275-291.
    12. Zhang, Zhonghua & Wang, Baodong & Sun, Qi & Zheng, Lingru, 2014. "A novel method for the preparation of CO2 sorption sorbents with high performance," Applied Energy, Elsevier, vol. 123(C), pages 179-184.
    13. Qigang Cen & Mengxiang Fang & Tao Wang & Izabela Majchrzak‐Kucęba & Dariusz Wawrzyńczak & Zhongyang Luo, 2016. "Thermodynamics and regeneration studies of CO2 adsorption on activated carbon," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(6), pages 787-796, December.
    14. Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
    15. Su, Fengsheng & Lu, Chungsying & Chung, Ai-Ju & Liao, Chien-Hsiang, 2014. "CO2 capture with amine-loaded carbon nanotubes via a dual-column temperature/vacuum swing adsorption," Applied Energy, Elsevier, vol. 113(C), pages 706-712.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yolanda Sánchez-Vicente & Lee Stevens & Concepción Pando & Albertina Cabañas, 2020. "Functionalization of Silica SBA-15 with [3-(2-Aminoethylamino)Propyl] Trimethoxysilane in Supercritical CO 2 Modified with Methanol or Ethanol for Carbon Capture," Energies, MDPI, vol. 13(21), pages 1-21, November.
    2. Zhang, Chen & Zhang, Xinqi & Su, Tingyu & Zhang, Yiheng & Wang, Liwei & Zhu, Xuancan, 2023. "Modification schemes of efficient sorbents for trace CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Song, Xueyi & Yuan, Junjie & Yang, Chen & Deng, Gaofeng & Wang, Zhichao & Gao, Jubao, 2023. "Carbon dioxide separation performance evaluation of amine-based versus choline-based deep eutectic solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Chao, Cong & Deng, Yimin & Dewil, Raf & Baeyens, Jan & Fan, Xianfeng, 2021. "Post-combustion carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Liu, Haorui & Wang, Shuoyu & Wang, Xiaoqiong & Feng, XiaoJing & Chen, Shuixia, 2022. "A stable solid amine adsorbent with interconnected open-cell structure for rapid CO2 adsorption and CO2/CH4 separation," Energy, Elsevier, vol. 258(C).
    6. Liu, Li & Jiang, Peng & Qian, Hongliang & Mu, Liwen & Lu, Xiaohua & Zhu, Jiahua, 2022. "CO2-negative biomass conversion: An economic route with co-production of green hydrogen and highly porous carbon," Applied Energy, Elsevier, vol. 311(C).
    7. Zhao, Yunlei & Jin, Bo & Luo, Xiao & Liang, Zhiwu, 2021. "Thermodynamic evaluation and experimental investigation of CaO-assisted Fe-based chemical looping reforming process for syngas production," Applied Energy, Elsevier, vol. 288(C).
    8. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).
    9. Chen, Hao & Dong, Sheying & Zhang, Yaojun & He, Panyang, 2022. "A comparative study on energy efficient CO2 capture using amine grafted solid sorbent: Materials characterization, isotherms, kinetics and thermodynamics," Energy, Elsevier, vol. 239(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, S.J. & Zhu, M. & Fu, Y. & Huang, Y.X. & Tao, Z.C. & Li, W.L., 2017. "Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas," Applied Energy, Elsevier, vol. 191(C), pages 87-98.
    2. Yang, Chuanruo & Du, Zhilin & Jin, Junsu & Chen, Jian & Mi, Jianguo, 2020. "Epoxide-functionalized tetraethylenepentamine encapsulated into porous copolymer spheres for CO2 capture with superior stability," Applied Energy, Elsevier, vol. 260(C).
    3. Chen, S.J. & Tao, Z.C. & Fu, Y. & Zhu, M. & Li, W.L. & Li, X.D., 2017. "CO2 separation from offshore natural gas in quiescent and flowing states using 13X zeolite," Applied Energy, Elsevier, vol. 205(C), pages 1435-1446.
    4. Fu, Wenfeng & Wang, Lanjing & Yang, Yongping, 2021. "Optimal design for double reheat coal-fired power plants with post-combustion CO2 capture: A novel thermal system integration with a carbon capture turbine," Energy, Elsevier, vol. 221(C).
    5. Najmus S. Sifat & Yousef Haseli, 2019. "A Critical Review of CO 2 Capture Technologies and Prospects for Clean Power Generation," Energies, MDPI, vol. 12(21), pages 1-33, October.
    6. Zhang, Xiaowen & Huang, Yufei & Gao, Hongxia & Luo, Xiao & Liang, Zhiwu & Tontiwachwuthikul, Paitoon, 2019. "Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process," Applied Energy, Elsevier, vol. 240(C), pages 827-841.
    7. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Armah, Edward K. & Wilson, Uwemedimo N., 2021. "Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
    9. Kim, Soyoung & Choi, Sung-Deuk & Seo, Yongwon, 2017. "CO2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters," Energy, Elsevier, vol. 118(C), pages 950-956.
    10. Wang, Dandan & Li, Sheng & Liu, Feng & Gao, Lin & Sui, Jun, 2018. "Post combustion CO2 capture in power plant using low temperature steam upgraded by double absorption heat transformer," Applied Energy, Elsevier, vol. 227(C), pages 603-612.
    11. Zhang, Xiaowen & Zhang, Xin & Liu, Helei & Li, Wensheng & Xiao, Min & Gao, Hongxia & Liang, Zhiwu, 2017. "Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts," Applied Energy, Elsevier, vol. 202(C), pages 673-684.
    12. A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Nabila Shehata & Abdul Hai Alami & Hussein M. Maghrabie & Mohammad Ali Abdelkareem, 2022. "Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy," Energies, MDPI, vol. 15(22), pages 1-38, November.
    13. Lai, Qinghua & Diao, Zhijun & Kong, Lingli & Adidharma, Hertanto & Fan, Maohong, 2018. "Amine-impregnated silicic acid composite as an efficient adsorbent for CO2 capture," Applied Energy, Elsevier, vol. 223(C), pages 293-301.
    14. Guo, Yafei & Zhao, Chuanwen & Li, Changhai & Lu, Shouxiang, 2014. "Application of PEI–K2CO3/AC for capturing CO2 from flue gas after combustion," Applied Energy, Elsevier, vol. 129(C), pages 17-24.
    15. Chao, Cong & Deng, Yimin & Dewil, Raf & Baeyens, Jan & Fan, Xianfeng, 2021. "Post-combustion carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Xie, Yujiao & Björkmalm, Johanna & Ma, Chunyan & Willquist, Karin & Yngvesson, Johan & Wallberg, Ola & Ji, Xiaoyan, 2018. "Techno-economic evaluation of biogas upgrading using ionic liquids in comparison with industrially used technology in Scandinavian anaerobic digestion plants," Applied Energy, Elsevier, vol. 227(C), pages 742-750.
    17. Simonsen, Kenneth René & Hansen, Dennis Severin & Pedersen, Simon, 2024. "Challenges in CO2 transportation: Trends and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    18. Xu, Ming-Xin & Wu, Hai-Bo & Wu, Ya-Chang & Wang, Han-Xiao & Ouyang, Hao-Dong & Lu, Qiang, 2021. "Design and evaluation of a novel system for the flue gas compression and purification from the oxy-fuel combustion process," Applied Energy, Elsevier, vol. 285(C).
    19. Lee, Jui-Yuan, 2017. "A multi-period optimisation model for planning carbon sequestration retrofits in the electricity sector," Applied Energy, Elsevier, vol. 198(C), pages 12-20.
    20. Li, Xiangyu & Wang, Zhiqing & Liu, Zheyu & Feng, Ru & Song, Shuangshuang & Huang, Jiejie & Fang, Yitian, 2022. "A novel preparation of solid amine sorbents for enhancing CO2 adsorption capacity using alumina-extracted waste," Energy, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.