IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v256y2019ics0306261919316447.html
   My bibliography  Save this article

A metal hydride air-conditioning system for fuel cell vehicles – Performance investigations

Author

Listed:
  • Weckerle, C.
  • Nasri, M.
  • Hegner, R.
  • Linder, M.
  • Bürger, I.

Abstract

An open cooling system based on metal hydrides is a promising new technology to reutilize the compression work in a hydrogen pressure tank by generating heat or cold. Our first of its kind system consists of two alternately operating plate reactors, which are filled with around 1.5 kg of Hydralloy C2 (Ti0.98Zr0.02V0.41Fe0.09Cr0.05Mn1.46) and coupled to a polymer electrolyte membrane fuel cell. In the present study, an extensive performance investigation for a variation of the main influencing parameters is performed: The electrical fuel cell power and the operating temperatures. Overall, it can be observed that in the entire range of various operating conditions, the fuel cell operation is not affected by the alternately operating H2 desorbing reactors. The variation of the electrical fuel cell power between 1.8 and 7.9 kW results in a maximum average cooling power of 807 W at an electrical power of 7 kW, reaching a specific cooling power of 276WkgMH-1. The systems performance decreases with rising ambient temperatures (varied in the range: 24.3–42.3 °C) and decreasing cooling temperatures (varied in the range: 13–25.4 °C) due to increased thermal losses and reduced half-cycle times. Concluding the parameter variations, optimization recommendations are given and the expected performance for an improved system design is derived.

Suggested Citation

  • Weckerle, C. & Nasri, M. & Hegner, R. & Linder, M. & Bürger, I., 2019. "A metal hydride air-conditioning system for fuel cell vehicles – Performance investigations," Applied Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919316447
    DOI: 10.1016/j.apenergy.2019.113957
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919316447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113957?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhai, X.Q. & Wang, R.Z. & Wu, J.Y. & Dai, Y.J. & Ma, Q., 2008. "Design and performance of a solar-powered air-conditioning system in a green building," Applied Energy, Elsevier, vol. 85(5), pages 297-311, May.
    2. Ahn, Jae Hwan & Kang, Hoon & Lee, Ho Seong & Kim, Yongchan, 2015. "Performance characteristics of a dual-evaporator heat pump system for effective dehumidifying and heating of a cabin in electric vehicles," Applied Energy, Elsevier, vol. 146(C), pages 29-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kotowicz, Janusz & Uchman, Wojciech & Jurczyk, Michał & Sekret, Robert, 2023. "Evaluation of the potential for distributed generation of green hydrogen using metal-hydride storage methods," Applied Energy, Elsevier, vol. 344(C).
    2. Christoph Weckerle & Marius Dörr & Marc Linder & Inga Bürger, 2020. "A Compact Thermally Driven Cooling System Based on Metal Hydrides," Energies, MDPI, vol. 13(10), pages 1-23, May.
    3. İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Vamsi Krishna Kukkapalli & Sunwoo Kim & Seth A. Thomas, 2023. "Thermal Management Techniques in Metal Hydrides for Hydrogen Storage Applications: A Review," Energies, MDPI, vol. 16(8), pages 1-27, April.
    5. Tong-Bou Chang & Jer-Jia Sheu & Jhong-Wei Huang, 2020. "High-Efficiency HVAC System with Defog/Dehumidification Function for Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-12, December.
    6. Kölbig, M. & Weckerle, C. & Linder, M. & Bürger, I., 2022. "Review on thermal applications for metal hydrides in fuel cell vehicles: Operation modes, recent developments and crucial design aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Di Giorgio, Paolo & Di Ilio, Giovanni & Jannelli, Elio & Conte, Fiorentino Valerio, 2022. "Innovative battery thermal management system based on hydrogen storage in metal hydrides for fuel cell hybrid electric vehicles," Applied Energy, Elsevier, vol. 315(C).
    8. Wu, Wei & Zhai, Chong & Sui, Zengguang & Sui, Yunren & Luo, Xianglong, 2021. "Proton exchange membrane fuel cell integrated with microchannel membrane-based absorption cooling for hydrogen vehicles," Renewable Energy, Elsevier, vol. 178(C), pages 560-573.
    9. Kölbig, Mila & Bürger, Inga & Linder, Marc, 2021. "Thermal applications in vehicles using Hydralloy C5 in single and coupled metal hydride systems," Applied Energy, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Jongho & Jeon, Yongseok & Cho, Wonhee & Kim, Yongchan, 2020. "Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles," Energy, Elsevier, vol. 193(C).
    2. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    3. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    4. Reda, Francesco & Viot, Maxime & Sipilä, Kari & Helm, Martin, 2016. "Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country," Applied Energy, Elsevier, vol. 166(C), pages 27-43.
    5. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    6. Eicker, Ursula & Pietruschka, Dirk & Haag, Maximilian & Schmitt, Andreas, 2015. "Systematic design and analysis of solar thermal cooling systems in different climates," Renewable Energy, Elsevier, vol. 80(C), pages 827-836.
    7. Eicker, Ursula & Schneider, Dietrich & Schumacher, Jürgen & Ge, Tianshu & Dai, Yanjun, 2010. "Operational experiences with solar air collector driven desiccant cooling systems," Applied Energy, Elsevier, vol. 87(12), pages 3735-3747, December.
    8. Seol, Sung-Hoon & Nagano, Katsunori & Togawa, Junya, 2020. "Simulation on annual performance of solar adsorption heat pump system using composite natural mesoporous material in different metrological conditions," Renewable Energy, Elsevier, vol. 162(C), pages 1587-1604.
    9. Audah, N. & Ghaddar, N. & Ghali, K., 2011. "Optimized solar-powered liquid desiccant system to supply building fresh water and cooling needs," Applied Energy, Elsevier, vol. 88(11), pages 3726-3736.
    10. Yoon Hyuk Shin & Seung Ku Ahn & Sung Chul Kim, 2016. "Performance Characteristics of PTC Elements for an Electric Vehicle Heating System," Energies, MDPI, vol. 9(10), pages 1-9, October.
    11. Qin, Fei & Zhang, Guiying & Xue, Qingfeng & Zou, Huiming & Tian, Changqing, 2017. "Experimental investigation and theoretical analysis of heat pump systems with two different injection portholes compressors for electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 2085-2093.
    12. Xiong, Z.Q. & Dai, Y.J. & Wang, R.Z., 2010. "Development of a novel two-stage liquid desiccant dehumidification system assisted by CaCl2 solution using exergy analysis method," Applied Energy, Elsevier, vol. 87(5), pages 1495-1504, May.
    13. Zhai, H. & Dai, Y.J. & Wu, J.Y. & Wang, R.Z., 2009. "Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas," Applied Energy, Elsevier, vol. 86(9), pages 1395-1404, September.
    14. Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
    15. Christoph Weckerle & Marius Dörr & Marc Linder & Inga Bürger, 2020. "A Compact Thermally Driven Cooling System Based on Metal Hydrides," Energies, MDPI, vol. 13(10), pages 1-23, May.
    16. Mokhtar, Marwan & Ali, Muhammad Tauha & Bräuniger, Simon & Afshari, Afshin & Sgouridis, Sgouris & Armstrong, Peter & Chiesa, Matteo, 2010. "Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data," Applied Energy, Elsevier, vol. 87(12), pages 3766-3778, December.
    17. Qi, Ronghui & Tian, Changqing & Shao, Shuangquan & Tang, Mingsheng & Lu, Lin, 2011. "Experimental investigation on performance improvement of electro-osmotic regeneration for solid desiccant," Applied Energy, Elsevier, vol. 88(8), pages 2816-2823, August.
    18. Yoon Hyuk Shin & Seungkyu Sim & Sung Chul Kim, 2015. "Performance Characteristics of a Modularized and Integrated PTC Heating System for an Electric Vehicle," Energies, MDPI, vol. 9(1), pages 1-11, December.
    19. Gordeeva, Larisa & Aristov, Yuri, 2014. "Dynamic study of methanol adsorption on activated carbon ACM-35.4 for enhancing the specific cooling power of adsorptive chillers," Applied Energy, Elsevier, vol. 117(C), pages 127-133.
    20. Mateus, Tiago & Oliveira, Armando C., 2009. "Energy and economic analysis of an integrated solar absorption cooling and heating system in different building types and climates," Applied Energy, Elsevier, vol. 86(6), pages 949-957, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919316447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.