IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v254y2019ics0306261919313297.html
   My bibliography  Save this article

Effects of engine operating conditions on flame propagation processes in a compression ignition optical engine

Author

Listed:
  • Lee, Seungpil
  • Yoon, Sungjun
  • Kwon, Hyuckmo
  • Lee, Joonkyu
  • Park, Sungwook

Abstract

This paper describes the effects of swirl flow in a diesel optical single-cylinder engine with experimental results and simulation results obtained using KIVA code. Experiments were conducted with an optical single-cylinder engine for various operating conditions such as injection timing, exhaust gas recirculation (EGR), and swirl ratio, and a numerical study was also conducted to analyze the effects of swirl flow and combustion characteristics in detail. Correlations between in-cylinder flow from numerical simulations and the flame propagation process from experiments were conducted. The optical experimental and simulation results demonstrated that retarded injection timing and high EGR rate reduced the luminosity of flame and the wall heat transfer. However, a high EGR rate simultaneously reduced the combustion efficiency. The average luminosity of the optical image was determined by the flame in the high-temperature region above 2400 K. The luminosity and volume fraction of the temperature region above 2400 K showed the same trends. Correlation results between the experiment and simulation showed that swirl flow affects the propagation process. The flame region was generated in the center of the combustion chamber due to swirl flow based on visualization and analysis results. That is, swirl flow caused separation of the flame by disrupting the continuity of the spray.

Suggested Citation

  • Lee, Seungpil & Yoon, Sungjun & Kwon, Hyuckmo & Lee, Joonkyu & Park, Sungwook, 2019. "Effects of engine operating conditions on flame propagation processes in a compression ignition optical engine," Applied Energy, Elsevier, vol. 254(C).
  • Handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919313297
    DOI: 10.1016/j.apenergy.2019.113642
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919313297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Seungpil & Park, Sungwook, 2017. "Optimization of the piston bowl geometry and the operating conditions of a gasoline-diesel dual-fuel engine based on a compression ignition engine," Energy, Elsevier, vol. 121(C), pages 433-448.
    2. Jain, Ayush & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2017. "Effect of split fuel injection and EGR on NOx and PM emission reduction in a low temperature combustion (LTC) mode diesel engine," Energy, Elsevier, vol. 122(C), pages 249-264.
    3. Li, Yaopeng & Jia, Ming & Liu, Yaodong & Xie, Maozhao, 2013. "Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine," Applied Energy, Elsevier, vol. 106(C), pages 184-197.
    4. Jeon, Joonho & Park, Sungwook, 2015. "Effects of pilot injection strategies on the flame temperature and soot distributions in an optical CI engine fueled with biodiesel and conventional diesel," Applied Energy, Elsevier, vol. 160(C), pages 581-591.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Shen, Zhaojie & Wang, Xinyan & Zhao, Hua & Lin, Bo & Shen, Yitao & Yang, Jianguo, 2021. "Numerical investigation of natural gas-diesel dual-fuel engine with different piston geometries and radial clearances," Energy, Elsevier, vol. 220(C).
    3. Liu, Junheng & Wu, Pengcheng & Ji, Qian & Sun, Ping & Wang, Pan & Meng, Zhongwei & Ma, Hongjie, 2022. "Experimental study on effects of pilot injection strategy on combustion and emission characteristics of diesel/methanol dual-fuel engine under low load," Energy, Elsevier, vol. 247(C).
    4. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    5. Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
    6. Arun Teja Doppalapudi & Abul Kalam Azad & Mohammad Masud Kamal Khan, 2023. "Analysis of Improved In-Cylinder Combustion Characteristics with Chamber Modifications of the Diesel Engine," Energies, MDPI, vol. 16(6), pages 1-18, March.
    7. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
    8. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    9. Huang, Haozhong & Huang, Rong & Guo, Xiaoyu & Pan, Mingzhang & Teng, Wenwen & Chen, Yingjie & Li, Zhongju, 2019. "Effects of pine oil additive and pilot injection strategies on energy distribution, combustion and emissions in a diesel engine at low-load condition," Applied Energy, Elsevier, vol. 250(C), pages 185-197.
    10. Yuan, Chenheng & Feng, Huihua & He, Yituan & Xu, Jing, 2016. "Combustion characteristics analysis of a free-piston engine generator coupling with dynamic and scavenging," Energy, Elsevier, vol. 102(C), pages 637-649.
    11. Ettefaghi, Ehsanollah & Rashidi, Alimorad & Ghobadian, Barat & Najafi, G. & Ghasemy, Ebrahim & Khoshtaghaza, Mohammad Hadi & Delavarizadeh, Saman & Mazlan, Mohamed, 2021. "Bio-nano emulsion fuel based on graphene quantum dot nanoparticles for reducing energy consumption and pollutants emission," Energy, Elsevier, vol. 218(C).
    12. Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
    13. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.
    14. Cheng, Xinwei & Gan, Suyin & Ng, Hoon Kiat, 2020. "A numerical study on the quasi-steady spray and soot characteristics for soybean methyl ester and its blends with ethanol using CFD-reduced chemical kinetics approach," Energy, Elsevier, vol. 200(C).
    15. Deqing Mei & Qisong Yu & Zhengjun Zhang & Shan Yue & Lizhi Tu, 2021. "Effects of Two Pilot Injection on Combustion and Emissions in a PCCI Diesel Engine," Energies, MDPI, vol. 14(6), pages 1-14, March.
    16. Liu, Junheng & Yang, Jun & Sun, Ping & Ji, Qian & Meng, Jian & Wang, Pan, 2018. "Experimental investigation of in-cylinder soot distribution and exhaust particle oxidation characteristics of a diesel engine with nano-CeO2 catalytic fuel," Energy, Elsevier, vol. 161(C), pages 17-27.
    17. Motlagh, Tara Yazdani & Azadani, Leila N. & Yazdani, Kaveh, 2020. "Multi-objective optimization of diesel injection parameters in a natural gas/diesel reactivity controlled compression ignition engine," Applied Energy, Elsevier, vol. 279(C).
    18. Paykani, Amin & Kakaee, Amir-Hasan & Rahnama, Pourya & Reitz, Rolf D., 2015. "Effects of diesel injection strategy on natural gas/diesel reactivity controlled compression ignition combustion," Energy, Elsevier, vol. 90(P1), pages 814-826.
    19. Bhowmick, Pathikrit & Jeevanantham, A.K. & Ashok, B. & Nanthagopal, K. & Perumal, D. Arumuga & Karthickeyan, V. & Vora, K.C. & Jain, Aatmesh, 2019. "Effect of fuel injection strategies and EGR on biodiesel blend in a CRDI engine," Energy, Elsevier, vol. 181(C), pages 1094-1113.
    20. Sun, Yao & Yu, Xiumin & Dong, Wei & Chen, Hong & Hu, Yunfeng, 2018. "Effect of split injection on particle number (PN) emissions in GDI engine at fast-idle through integrated analysis of optics and mechanics," Energy, Elsevier, vol. 165(PB), pages 55-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919313297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.