IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v46y2015icp62-69.html
   My bibliography  Save this article

Modelling and uncertainties in integrated energy planning

Author

Listed:
  • Mirakyan, Atom
  • De Guio, Roland

Abstract

Significant progress has been done in the last decades to characterise and define uncertainty in model based planning and decision making in general and in areas like integrated assessment or water resource management. However, existing uncertainty typologies are only partially shared. In city or territory integrated energy planning literature less attention has been paid to uncertainty aspect. Integrated energy planning and model building process have been defined on the base of literature review and the need for consideration of uncertainty is highlighted at the beginning of this work. Using this planning and modelling framework, a conceptual basis of uncertainty showing the allocation of different types of uncertainty according to each planning and modelling stage is provided. Uncertainty concepts proposed in existing typologies of uncertainty from different domains are harmonised into a framework and adapted to the special energy modelling and planning conditions, in a holistic way. Based on this framework, a review of practices in energy planning and modelling shows the gap between needs and practices and raises the question of methodological supports for fulfilling it. The suggested framework can be used to identify and classify different types of uncertainty in context of sustainable model based integrated energy planning in cities or territories, or develop methods to address them.

Suggested Citation

  • Mirakyan, Atom & De Guio, Roland, 2015. "Modelling and uncertainties in integrated energy planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 62-69.
  • Handle: RePEc:eee:rensus:v:46:y:2015:i:c:p:62-69
    DOI: 10.1016/j.rser.2015.02.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115001161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.02.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pietrapertosa, F. & Cosmi, C. & Macchiato, M. & Salvia, M. & Cuomo, V., 2009. "Life Cycle Assessment, ExternE and Comprehensive Analysis for an integrated evaluation of the environmental impact of anthropogenic activities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1039-1048, June.
    2. Ghanadan, Rebecca & Koomey, Jonathan G., 2005. "Using energy scenarios to explore alternative energy pathways in California," Energy Policy, Elsevier, vol. 33(9), pages 1117-1142, June.
    3. Mirakyan, Atom & De Guio, Roland, 2013. "Integrated energy planning in cities and territories: A review of methods and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 289-297.
    4. Möst, Dominik & Keles, Dogan, 2010. "A survey of stochastic modelling approaches for liberalised electricity markets," European Journal of Operational Research, Elsevier, vol. 207(2), pages 543-556, December.
    5. Daniel, J. & Dicorato, M. & Forte, G. & Iniyan, S. & Trovato, M., 2009. "A methodology for the electrical energy system planning of Tamil Nadu state (India)," Energy Policy, Elsevier, vol. 37(3), pages 904-914, March.
    6. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    7. Terrados, J. & Almonacid, G. & Hontoria, L., 2007. "Regional energy planning through SWOT analysis and strategic planning tools.: Impact on renewables development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1275-1287, August.
    8. Mirakyan, Atom & Guio, R.D., 2014. "A methodology in innovative support of the integrated energy planning preparation and orientation phase," Energy, Elsevier, vol. 78(C), pages 916-927.
    9. Pietrapertosa, F. & Cosmi, C. & Macchiato, M. & Marmo, G. & Salvia, M., 2003. "Comprehensive modelling for approaching the Kyoto targets on a local scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(3), pages 249-270, June.
    10. Keirstead, James & Schulz, Niels B., 2010. "London and beyond: Taking a closer look at urban energy policy," Energy Policy, Elsevier, vol. 38(9), pages 4870-4879, September.
    11. Münster, Marie & Lund, Henrik, 2009. "Use of waste for heat, electricity and transport—Challenges when performing energy system analysis," Energy, Elsevier, vol. 34(5), pages 636-644.
    12. Cormio, C. & Dicorato, M. & Minoia, A. & Trovato, M., 2003. "A regional energy planning methodology including renewable energy sources and environmental constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 99-130, April.
    13. Phdungsilp, Aumnad, 2010. "Integrated energy and carbon modeling with a decision support system: Policy scenarios for low-carbon city development in Bangkok," Energy Policy, Elsevier, vol. 38(9), pages 4808-4817, September.
    14. Lund, Henrik & Munster, Ebbe, 2006. "Integrated energy systems and local energy markets," Energy Policy, Elsevier, vol. 34(10), pages 1152-1160, July.
    15. Brownsword, R.A. & Fleming, P.D. & Powell, J.C. & Pearsall, N., 2005. "Sustainable cities - modelling urban energy supply and demand," Applied Energy, Elsevier, vol. 82(2), pages 167-180, October.
    16. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    17. Terrados, J. & Almonacid, G. & Pérez-Higueras, P., 2009. "Proposal for a combined methodology for renewable energy planning. Application to a Spanish region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2022-2030, October.
    18. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    19. Lund, Henrik, 2005. "Large-scale integration of wind power into different energy systems," Energy, Elsevier, vol. 30(13), pages 2402-2412.
    20. Greening, Lorna A. & Bernow, Steve, 2004. "Design of coordinated energy and environmental policies: use of multi-criteria decision-making," Energy Policy, Elsevier, vol. 32(6), pages 721-735, April.
    21. Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
    22. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Tan, Q., 2009. "Identification of optimal strategies for energy management systems planning under multiple uncertainties," Applied Energy, Elsevier, vol. 86(4), pages 480-495, April.
    23. Tsioliaridou, E. & Bakos, G.C. & Stadler, M., 2006. "A new energy planning methodology for the penetration of renewable energy technologies in electricity sector--application for the island of Crete," Energy Policy, Elsevier, vol. 34(18), pages 3757-3764, December.
    24. Nilsson, J. Stenlund & Mårtensson, A., 2003. "Municipal energy-planning and development of local energy-systems," Applied Energy, Elsevier, vol. 76(1-3), pages 179-187, September.
    25. Hirst, Eric & Schweitzer, Martin, 1989. "Uncertainty: A critical element of integrated resource planning," The Electricity Journal, Elsevier, vol. 2(6), pages 16-27, July.
    26. Ascough, J.C. & Maier, H.R. & Ravalico, J.K. & Strudley, M.W., 2008. "Future research challenges for incorporation of uncertainty in environmental and ecological decision-making," Ecological Modelling, Elsevier, vol. 219(3), pages 383-399.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirakyan, Atom & De Guio, Roland, 2013. "Integrated energy planning in cities and territories: A review of methods and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 289-297.
    2. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    3. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    4. Hong, Lixuan & Zhou, Nan & Fridley, David & Raczkowski, Chris, 2013. "Assessment of China's renewable energy contribution during the 12th Five Year Plan," Energy Policy, Elsevier, vol. 62(C), pages 1533-1543.
    5. Hong, Lixuan & Lund, Henrik & Möller, Bernd, 2012. "The importance of flexible power plant operation for Jiangsu's wind integration," Energy, Elsevier, vol. 41(1), pages 499-507.
    6. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    8. Huang, Zishuo & Yu, Hang & Peng, Zhenwei & Zhao, Mei, 2015. "Methods and tools for community energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1335-1348.
    9. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    10. Comodi, Gabriele & Cioccolanti, Luca & Polonara, Fabio & Brandoni, Caterina, 2012. "Local authorities in the context of energy and climate policy," Energy Policy, Elsevier, vol. 51(C), pages 737-748.
    11. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    12. Cosmi, Carmelina & Dvarionenė, Jolanta & Marques, Isabel & Di Leo, Senatro & Gecevičius, Giedrius & Gurauskienė, Inga & Mendes, Gisela & Selada, Catarina, 2015. "A holistic approach to sustainable energy development at regional level: The RENERGY self-assessment methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 693-707.
    13. Mirakyan, Atom & Guio, R.D., 2014. "A methodology in innovative support of the integrated energy planning preparation and orientation phase," Energy, Elsevier, vol. 78(C), pages 916-927.
    14. Ilaria Delponte & Corrado Schenone, 2020. "RES Implementation in Urban Areas: An Updated Overview," Sustainability, MDPI, vol. 12(1), pages 1-14, January.
    15. Francesco Calise & Massimo Dentice D’Accadia & Carlo Barletta & Vittoria Battaglia & Antun Pfeifer & Neven Duic, 2017. "Detailed Modelling of the Deep Decarbonisation Scenarios with Demand Response Technologies in the Heating and Cooling Sector: A Case Study for Italy," Energies, MDPI, vol. 10(10), pages 1-33, October.
    16. Dominković, D.F. & Weinand, J.M. & Scheller, F. & D'Andrea, M. & McKenna, R., 2022. "Reviewing two decades of energy system analysis with bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    17. Gota, Dan-Ioan & Lund, Henrik & Miclea, Liviu, 2011. "A Romanian energy system model and a nuclear reduction strategy," Energy, Elsevier, vol. 36(11), pages 6413-6419.
    18. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    19. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2011. "Large-scale integration of wind power into the existing Chinese energy system," Energy, Elsevier, vol. 36(8), pages 4753-4760.
    20. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:46:y:2015:i:c:p:62-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.