IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v252y2019ic76.html
   My bibliography  Save this article

How does climate change affect electricity system planning and optimal allocation of variable renewable energy?

Author

Listed:
  • Peter, Jakob

Abstract

Ongoing climate change affects complex and long-lived infrastructures like electricity systems. Particularly for decarbonized electricity systems based on variable renewable energies, there is a variety of impact mechanisms working differently in size and direction. Main impacts for Europe include changes in wind and solar resources, hydro power, cooling water availability for thermoelectric generation and electricity demand. Hence, it is not only important to understand the total effects, i.e., how much welfare may be gained when accounting for climate change impacts in all dimensions, but also to disentangle various effects in terms of their marginal contribution to the potential welfare loss. This paper applies a two-stage modeling framework to assess very strong climate change impacts on a cost-optimally decarbonized, highly renewables-based European electricity system. Thereby, the performance of two electricity system design strategies – one based on no anticipation of climate change and one anticipating impacts of climate change – is studied under a variety of climate change impacts. Impacts on wind and solar resources are found to cause the largest system effects in 2100. Combined climate change impacts increase system costs of a system designed without climate change anticipation due to increased fuel and carbon permit costs. Applying a system design strategy with climate change anticipation increases the cost-optimal share of variable renewable energy based on additional wind offshore capacity in 2100, at a reduction in nuclear, wind onshore and solar photovoltaics capacity. Compared to a no anticipation strategy, total system costs are reduced.

Suggested Citation

  • Peter, Jakob, 2019. "How does climate change affect electricity system planning and optimal allocation of variable renewable energy?," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:252:y:2019:i:c:76
    DOI: 10.1016/j.apenergy.2019.113397
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919310712
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helgeson, Broghan & Peter, Jakob, 2020. "The role of electricity in decarbonizing European road transport – Development and assessment of an integrated multi-sectoral model," Applied Energy, Elsevier, vol. 262(C).
    2. Nahmmacher, Paul & Schmid, Eva & Hirth, Lion & Knopf, Brigitte, 2016. "Carpe diem: A novel approach to select representative days for long-term power system modeling," Energy, Elsevier, vol. 112(C), pages 430-442.
    3. Marshall Burke & W. Matthew Davis & Noah S. Diffenbaugh, 2018. "Large potential reduction in economic damages under UN mitigation targets," Nature, Nature, vol. 557(7706), pages 549-553, May.
    4. Peter, Jakob & Wagner, Johannes, 2018. "Optimal Allocation of Variable Renewable Energy Considering Contributions to Security of Supply," EWI Working Papers 2018-2, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    5. Ueckerdt, Falko & Pietzcker, Robert & Scholz, Yvonne & Stetter, Daniel & Giannousakis, Anastasis & Luderer, Gunnar, 2017. "Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model," Energy Economics, Elsevier, vol. 64(C), pages 665-684.
    6. Myhr, Anders & Bjerkseter, Catho & Ågotnes, Anders & Nygaard, Tor A., 2014. "Levelised cost of energy for offshore floating wind turbines in a life cycle perspective," Renewable Energy, Elsevier, vol. 66(C), pages 714-728.
    7. Richter, Jan, 2011. "DIMENSION - A Dispatch and Investment Model for European Electricity Markets," EWI Working Papers 2011-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    8. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    9. Bertsch, Joachim & Growitsch, Christian & Lorenczik, Stefan & Nagl, Stephan, 2016. "Flexibility in Europe's power sector — An additional requirement or an automatic complement?," Energy Economics, Elsevier, vol. 53(C), pages 118-131.
    10. Joachim Bertsch & Simeon Hagspiel & Lisa Just, 2016. "Congestion management in power systems," Journal of Regulatory Economics, Springer, vol. 50(3), pages 290-327, December.
    11. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    12. Isabelle Tobin & Robert Vautard & Irena Balog & François-Marie Bréon & Sonia Jerez & Paolo Ruti & Françoise Thais & Mathieu Vrac & Pascal Yiou, 2015. "Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections," Climatic Change, Springer, vol. 128(1), pages 99-112, January.
    13. Lijesen, Mark G., 2007. "The real-time price elasticity of electricity," Energy Economics, Elsevier, vol. 29(2), pages 249-258, March.
    14. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    15. Nahmmacher, Paul & Schmid, Eva & Pahle, Michael & Knopf, Brigitte, 2016. "Strategies against shocks in power systems – An analysis for the case of Europe," Energy Economics, Elsevier, vol. 59(C), pages 455-465.
    16. Jägemann, Cosima & Fürsch, Michaela & Hagspiel, Simeon & Nagl, Stephan, 2013. "Decarbonizing Europe's power sector by 2050 — Analyzing the economic implications of alternative decarbonization pathways," Energy Economics, Elsevier, vol. 40(C), pages 622-636.
    17. Schlott, Markus & Kies, Alexander & Brown, Tom & Schramm, Stefan & Greiner, Martin, 2018. "The impact of climate change on a cost-optimal highly renewable European electricity network," Applied Energy, Elsevier, vol. 230(C), pages 1645-1659.
    18. Gunnar Eskeland & Torben Mideksa, 2010. "Electricity demand in a changing climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(8), pages 877-897, December.
    19. Knaut, Andreas & Tode, Christian & Lindenberger, Dietmar & Malischek, Raimund & Paulus, Simon & Wagner, Johannes, 2016. "The reference forecast of the German energy transition—An outlook on electricity markets," Energy Policy, Elsevier, vol. 92(C), pages 477-491.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    2. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    3. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    4. Yang, Zhikai & Liu, Pan & Cheng, Lei & Liu, Deli & Ming, Bo & Li, He & Xia, Qian, 2021. "Sizing utility-scale photovoltaic power generation for integration into a hydropower plant considering the effects of climate change: A case study in the Longyangxia of China," Energy, Elsevier, vol. 236(C).
    5. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    6. Cohen, Stuart M. & Dyreson, Ana & Turner, Sean & Tidwell, Vince & Voisin, Nathalie & Miara, Ariel, 2022. "A multi-model framework for assessing long- and short-term climate influences on the electric grid," Applied Energy, Elsevier, vol. 317(C).
    7. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    8. Ye, Bin & Jiang, Jingjing & Liu, Junguo & Zheng, Yi & Zhou, Nan, 2021. "Research on quantitative assessment of climate change risk at an urban scale: Review of recent progress and outlook of future direction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Lovro Frković & Boris Ćosić & Tomislav Pukšec & Nikola Vladimir, 2023. "Modelling of the Standalone Onshore Charging Station: The Nexus between Offshore Renewables and All-Electric Ships," Energies, MDPI, vol. 16(15), pages 1-16, August.
    10. Laha, Priyanka & Chakraborty, Basab, 2021. "Cost optimal combinations of storage technologies for maximizing renewable integration in Indian power system by 2040: Multi-region approach," Renewable Energy, Elsevier, vol. 179(C), pages 233-247.
    11. Shabazbegian, Vahid & Ameli, Hossein & Ameli, Mohammad Taghi & Strbac, Goran & Qadrdan, Meysam, 2021. "Co-optimization of resilient gas and electricity networks; a novel possibilistic chance-constrained programming approach," Applied Energy, Elsevier, vol. 284(C).
    12. Fortes, Patrícia & Simoes, Sofia G. & Amorim, Filipa & Siggini, Gildas & Sessa, Valentina & Saint-Drenan, Yves-Marie & Carvalho, Sílvia & Mujtaba, Babar & Diogo, Paulo & Assoumou, Edi, 2022. "How sensitive is a carbon-neutral power sector to climate change? The interplay between hydro, solar and wind for Portugal," Energy, Elsevier, vol. 239(PB).
    13. Lukas Schmidt & Jonas Zinke, 2023. "One Price Fits All? On Inefficient Siting Incentives for Wind Power Expansion in Germany under Uniform Pricing," The Energy Journal, , vol. 44(4), pages 21-52, July.
    14. Ding, Qian & Huang, Jianbai & Chen, Jinyu & Luo, Xianfeng, 2024. "Climate warming, renewable energy consumption and rare earth market: Evidence from the United States," Energy, Elsevier, vol. 290(C).
    15. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Figueiredo, Raquel & Nunes, Pedro & Brito, Miguel C., 2021. "The resilience of a decarbonized power system to climate variability: Portuguese case study," Energy, Elsevier, vol. 224(C).
    17. Schmidt, Lukas & Zinke, Jonas, 2020. "One price fits all? Wind power expansion under uniform and nodal pricing in Germany," EWI Working Papers 2020-6, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    18. Gong, J.W. & Li, Y.P. & Lv, J. & Huang, G.H. & Suo, C. & Gao, P.P., 2022. "Development of an integrated bi-level model for China’s multi-regional energy system planning under uncertainty," Applied Energy, Elsevier, vol. 308(C).
    19. Gaylord Carrillo Caballero & Yulineth Cardenas Escorcia & Luis Sebastián Mendoza Castellanos & Ana Lisbeth Galindo Noguera & Osvaldo José Venturini & Electo Eduardo Silva Lora & Elkin I. Gutiérrez Vel, 2022. "Thermal Analysis of a Parabolic Trough Collectors System Coupled to an Organic Rankine Cycle and a Two-Tank Thermal Storage System: Case Study of Itajubá-MG Brazil," Energies, MDPI, vol. 15(21), pages 1-21, November.
    20. António Couto & Ana Estanqueiro, 2020. "Exploring Wind and Solar PV Generation Complementarity to Meet Electricity Demand," Energies, MDPI, vol. 13(16), pages 1-21, August.
    21. Li, He & Liu, Pan & Guo, Shenglian & Cheng, Lei & Huang, Kangdi & Feng, Maoyuan & He, Shaokun & Ming, Bo, 2021. "Deriving adaptive long-term complementary operating rules for a large-scale hydro-photovoltaic hybrid power plant using ensemble Kalman filter," Applied Energy, Elsevier, vol. 301(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter, Jakob & Wagner, Johannes, 2018. "Optimal Allocation of Variable Renewable Energy Considering Contributions to Security of Supply," EWI Working Papers 2018-2, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    2. Helgeson, Broghan & Peter, Jakob, 2020. "The role of electricity in decarbonizing European road transport – Development and assessment of an integrated multi-sectoral model," Applied Energy, Elsevier, vol. 262(C).
    3. Siala, Kais & Mier, Mathias & Schmidt, Lukas & Torralba-Díaz, Laura & Sheykhha, Siamak & Savvidis, Georgios, 2022. "Which model features matter? An experimental approach to evaluate power market modeling choices," Energy, Elsevier, vol. 245(C).
    4. Malischek, Raimund & Trüby, Johannes, 2016. "The future of nuclear power in France: an analysis of the costs of phasing-out," Energy, Elsevier, vol. 116(P1), pages 908-921.
    5. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    6. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    7. Zappa, William & van den Broek, Machteld, 2018. "Analysing the potential of integrating wind and solar power in Europe using spatial optimisation under various scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1192-1216.
    8. Lund, Henrik & Skov, Iva Ridjan & Thellufsen, Jakob Zinck & Sorknæs, Peter & Korberg, Andrei David & Chang, Miguel & Mathiesen, Brian Vad & Kany, Mikkel Strunge, 2022. "The role of sustainable bioenergy in a fully decarbonised society," Renewable Energy, Elsevier, vol. 196(C), pages 195-203.
    9. Zaixun Ling & Yibo Cui & Jingwen Zheng & Yu Guo & Wanli Cai & Xiaofei Chen & Jiaqi Yuan & Wenjie Gang, 2021. "Design Optimization and Comparative Analysis of 100% Renewable Energy Systems for Residential Communities in Typical Areas of China When Considering Environmental and Economic Performance," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    10. Clemens Gerbaulet & Casimir Lorenz, 2017. "dynELMOD: A Dynamic Investment and Dispatch Model for the Future European Electricity Market," Data Documentation 88, DIW Berlin, German Institute for Economic Research.
    11. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    12. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    14. Quentin Perrier, 2017. "The French Nuclear Bet," Working Papers 2017.18, Fondazione Eni Enrico Mattei.
    15. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    16. Knaut, Andreas & Paschmann, Martin, 2017. "Decoding Restricted Participation in Sequential Electricity Markets," EWI Working Papers 2017-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 31 Aug 2017.
    17. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    18. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    19. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    20. Auguadra, Marco & Ribó-Pérez, David & Gómez-Navarro, Tomás, 2023. "Planning the deployment of energy storage systems to integrate high shares of renewables: The Spain case study," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:252:y:2019:i:c:76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.