IDEAS home Printed from https://ideas.repec.org/a/kap/regeco/v50y2016i3d10.1007_s11149-016-9310-x.html
   My bibliography  Save this article

Congestion management in power systems

Author

Listed:
  • Joachim Bertsch

    (ewi Energy Research and Scenarios gGmbH)

  • Simeon Hagspiel

    (University of Cologne)

  • Lisa Just

    (ewi Energy Research and Scenarios gGmbH)

Abstract

In liberalized power systems, generation and transmission services are unbundled, but remain tightly interlinked. Congestion management in the transmission network is of crucial importance for the efficiency of these inter-linkages. Different regulatory designs have been suggested, analyzed and followed, such as uniform zonal pricing with redispatch or nodal pricing. However, the literature has either focused on the short-term efficiency of congestion management or specific issues of timing investments. In contrast, this paper presents a generalized and flexible economic modeling framework based on a decomposed inter-temporal equilibrium model including generation, transmission, as well as their inter-linkages. The model covers short-run operation and long-run investments and hence, allows to analyze short and long-term efficiency of different congestion management designs that vary with respect to the definition of market areas, the regulation and organization of TSOs, the way of managing congestion besides grid expansion, and the type of cross-border capacity allocation. We are able to identify and isolate implicit frictions and sources of inefficiencies in the different regulatory designs, and to provide a comparative analysis including a benchmark against a first-best welfare-optimal result. To demonstrate the applicability of our framework, we calibrate and numerically solve our model for a detailed representation of the Central Western European (CWE) region, consisting of 70 nodes and 174 power lines. Analyzing six different congestion management designs until 2030, we show that compared to the first-best benchmark, i.e., nodal pricing, inefficiencies of up to 4.6% arise. Inefficiencies are mainly driven by the approach of determining cross-border capacities as well as the coordination of transmission system operators’ activities.

Suggested Citation

  • Joachim Bertsch & Simeon Hagspiel & Lisa Just, 2016. "Congestion management in power systems," Journal of Regulatory Economics, Springer, vol. 50(3), pages 290-327, December.
  • Handle: RePEc:kap:regeco:v:50:y:2016:i:3:d:10.1007_s11149-016-9310-x
    DOI: 10.1007/s11149-016-9310-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11149-016-9310-x
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11149-016-9310-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huppmann, Daniel & Egerer, Jonas, 2015. "National-strategic investment in European power transmission capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 191-203.
    2. Paul Joskow & Jean Tirole, 2005. "Merchant Transmission Investment," Journal of Industrial Economics, Wiley Blackwell, vol. 53(2), pages 233-264, June.
    3. Felix Höffler & Achim Wambach, 2013. "Investment coordination in network industries: the case of electricity grid and electricity generation," Journal of Regulatory Economics, Springer, vol. 44(3), pages 287-307, December.
    4. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    5. Brunekreeft, Gert & Neuhoff, Karsten & Newbery, David, 2005. "Electricity transmission: An overview of the current debate," Utilities Policy, Elsevier, vol. 13(2), pages 73-93, June.
    6. Vincent Rious & Yannick Perez & Philippe Dessante, 2008. "Is combination of nodal pricing and average participation tariff the best solution to coordinate the location of power plants with lumpy transmission investments?," Post-Print hal-00323878, HAL.
    7. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    8. Leuthold, Florian & Weigt, Hannes & von Hirschhausen, Christian, 2008. "Efficient pricing for European electricity networks - The theory of nodal pricing applied to feeding-in wind in Germany," Utilities Policy, Elsevier, vol. 16(4), pages 284-291, December.
    9. Höffler, Felix & Wambach, Achim, 2013. "Investment Coordination in Network Industries: The Case of Electricity Grid and Electricity," EWI Working Papers 2013-12, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    10. Adriaan Weijde & Benjamin Hobbs, 2011. "Locational-based coupling of electricity markets: benefits from coordinating unit commitment and balancing markets," Journal of Regulatory Economics, Springer, vol. 39(3), pages 223-251, June.
    11. Ehrenmann, Andreas & Smeers, Yves, 2005. "Inefficiencies in European congestion management proposals," Utilities Policy, Elsevier, vol. 13(2), pages 135-152, June.
    12. Richard Green, 2007. "Nodal pricing of electricity: how much does it cost to get it wrong?," Journal of Regulatory Economics, Springer, vol. 31(2), pages 125-149, April.
    13. Enzo Sauma & Shmuel Oren, 2006. "Proactive planning and valuation of transmission investments in restructured electricity markets," Journal of Regulatory Economics, Springer, vol. 30(3), pages 358-387, November.
    14. Jean-Michel Glachant, 2010. "The Achievement of the EU Electricity Internal Market through Market Coupling," RSCAS Working Papers 2010/87, European University Institute.
    15. OGGIONI, Giorgia & SMEERS, Yves, 2013. "Market failures of market coupling and counter-trading in Europe: an illustrative model based discussion," LIDAM Reprints CORE 2553, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Neuhoff, Karsten & Barquin, Julian & Bialek, Janusz W. & Boyd, Rodney & Dent, Chris J. & Echavarren, Francisco & Grau, Thilo & von Hirschhausen, Christian & Hobbs, Benjamin F. & Kunz, Friedrich & Nabe, 2013. "Renewable electric energy integration: Quantifying the value of design of markets for international transmission capacity," Energy Economics, Elsevier, vol. 40(C), pages 760-772.
    17. Friedrich Kunz, 2013. "Improving Congestion Management: How to Facilitate the Integration of Renewable Generation in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    18. Jägemann, Cosima & Fürsch, Michaela & Hagspiel, Simeon & Nagl, Stephan, 2013. "Decarbonizing Europe's power sector by 2050 — Analyzing the economic implications of alternative decarbonization pathways," Energy Economics, Elsevier, vol. 40(C), pages 622-636.
    19. Richter, Jan, 2011. "DIMENSION - A Dispatch and Investment Model for European Electricity Markets," EWI Working Papers 2011-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    20. Giorgia Oggioni and Yves Smeers, 2012. "Degrees of Coordination in Market Coupling and Counter-Trading," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    21. Chao, Hung-po & Peck, Stephen & Oren, Shmuel & Wilson, Robert, 2000. "Flow-Based Transmission Rights and Congestion Management," The Electricity Journal, Elsevier, vol. 13(8), pages 38-58, October.
    22. Daxhelet, O. & Smeers, Y., 2007. "The EU regulation on cross-border trade of electricity: A two-stage equilibrium model," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1396-1412, September.
    23. Giorgia Oggioni & Yves Smeers & Elisabetta Allevi & Siegfried Schaible, 2012. "A Generalized Nash Equilibrium Model of Market Coupling in the European Power System," Networks and Spatial Economics, Springer, vol. 12(4), pages 503-560, December.
    24. Enzo Sauma & Shmuel Oren, 2006. "Proactive planning and valuation of transmission investments in restructured electricity markets," Journal of Regulatory Economics, Springer, vol. 30(3), pages 261-290, November.
    25. Hagspiel, S. & Jägemann, C. & Lindenberger, D. & Brown, T. & Cherevatskiy, S. & Tröster, E., 2014. "Cost-optimal power system extension under flow-based market coupling," Energy, Elsevier, vol. 66(C), pages 654-666.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kunz, Friedrich, 2018. "Quo Vadis? (Un)scheduled electricity flows under market splitting and network extension in central Europe," Energy Policy, Elsevier, vol. 116(C), pages 198-209.
    2. Tim Felling & Björn Felten & Paul Osinski & Christoph Weber, 2023. "Assessing Improved Price Zones in Europe: Flow-Based Market Coupling in Central Western Europe in Focus," The Energy Journal, , vol. 44(6), pages 71-112, November.
    3. Henckes, Philipp & Knaut, Andreas & Obermüller, Frank & Frank, Christopher, 2018. "The benefit of long-term high resolution wind data for electricity system analysis," Energy, Elsevier, vol. 143(C), pages 934-942.
    4. Peter, Jakob, 2019. "How does climate change affect electricity system planning and optimal allocation of variable renewable energy?," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Triolo, Ryan C. & Wolak, Frank A., 2022. "Quantifying the benefits of a nodal market design in the Texas electricity market," Energy Economics, Elsevier, vol. 112(C).
    6. Jeddi, Samir & Sitzmann, Amelie, 2021. "Network tariffs under different pricing schemes in a dynamically consistent framework," EWI Working Papers 2021-1, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    7. Kasina, Saamrat & Hobbs, Benjamin F., 2020. "The value of cooperation in interregional transmission planning: A noncooperative equilibrium model approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 740-752.
    8. Johannes Knorr & Martin Bichler & Teodora Dobos, 2024. "Zonal vs. Nodal Pricing: An Analysis of Different Pricing Rules in the German Day-Ahead Market," Papers 2403.09265, arXiv.org, revised Jun 2024.
    9. Bjørndal, Endre & Bjørndal, Mette Helene & Coniglio, Stefano & Körner, Marc-Fabian & Leinauer, Christina & Weibelzahl, Martin, 2023. "Energy storage operation and electricity market design: On the market power of monopolistic storage operators," European Journal of Operational Research, Elsevier, vol. 307(2), pages 887-909.
    10. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2019. "Regionally differentiated network fees to affect incentives for generation investment," Energy, Elsevier, vol. 177(C), pages 487-502.
    11. Ambrosius, Mirjam & Grimm, Veronika & Kleinert, Thomas & Liers, Frauke & Schmidt, Martin & Zöttl, Gregor, 2020. "Endogenous price zones and investment incentives in electricity markets: An application of multilevel optimization with graph partitioning," Energy Economics, Elsevier, vol. 92(C).
    12. Peter, Jakob & Wagner, Johannes, 2018. "Optimal Allocation of Variable Renewable Energy Considering Contributions to Security of Supply," EWI Working Papers 2018-2, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    13. Obermüller, Frank, 2017. "Build Wind Capacities at Windy Locations? Assessment of System Optimal Wind Locations," EWI Working Papers 2017-9, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    14. Krebs, Vanessa & Schewe, Lars & Schmidt, Martin, 2018. "Uniqueness and multiplicity of market equilibria on DC power flow networks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 165-178.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertsch, Joachim & Hagspiel, Simeon & Just, Lisa, 2016. "Congestion management in power systems - Long-term modeling framework and large-scale application," EWI Working Papers 2015-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    2. Ruderer, Dominik & Zöttl, Gregor, 2018. "Transmission pricing and investment incentives," Utilities Policy, Elsevier, vol. 55(C), pages 14-30.
    3. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    4. Grimm, Veronika & Martin, Alexander & Schmidt, Martin & Weibelzahl, Martin & Zöttl, Gregor, 2016. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 493-509.
    5. Leuthold, Florian & Jeske, Till & Weigt, Hannes & von Hirschhausen, Christian, 2009. "When the Wind Blows Over Europe: A Simulation Analysis and the Impact of Grid Extensions," MPRA Paper 65655, University Library of Munich, Germany.
    6. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    7. Neuhoff, Karsten & Barquin, Julian & Bialek, Janusz W. & Boyd, Rodney & Dent, Chris J. & Echavarren, Francisco & Grau, Thilo & von Hirschhausen, Christian & Hobbs, Benjamin F. & Kunz, Friedrich & Nabe, 2013. "Renewable electric energy integration: Quantifying the value of design of markets for international transmission capacity," Energy Economics, Elsevier, vol. 40(C), pages 760-772.
    8. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    9. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
    10. Pär Holmberg and Ewa Lazarczyk, 2015. "Comparison of congestion management techniques: Nodal, zonal and discriminatory pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    11. Hagspiel, S. & Jägemann, C. & Lindenberger, D. & Brown, T. & Cherevatskiy, S. & Tröster, E., 2014. "Cost-optimal power system extension under flow-based market coupling," Energy, Elsevier, vol. 66(C), pages 654-666.
    12. Bjørndal, Endre & Bjørndal, Mette & Cai, Hong & Panos, Evangelos, 2018. "Hybrid pricing in a coupled European power market with more wind power," European Journal of Operational Research, Elsevier, vol. 264(3), pages 919-931.
    13. Ochoa, Camila & van Ackere, Ann, 2015. "Winners and losers of market coupling," Energy, Elsevier, vol. 80(C), pages 522-534.
    14. Ambrosius, M. & Egerer, J. & Grimm, V. & Weijde, A.H. van der, 2020. "Uncertain bidding zone configurations: The role of expectations for transmission and generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 285(1), pages 343-359.
    15. Kunz, Friedrich & Zerrahn, Alexander, 2015. "Benefits of coordinating congestion management in electricity transmission networks: Theory and application to Germany," Utilities Policy, Elsevier, vol. 37(C), pages 34-45.
    16. Joachim Bertsch, & Tom Brown & Simeon Hagspiel & Lisa Just, 2017. "The relevance of grid expansion under zonal markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    17. Triolo, Ryan C. & Wolak, Frank A., 2022. "Quantifying the benefits of a nodal market design in the Texas electricity market," Energy Economics, Elsevier, vol. 112(C).
    18. Holmberg, P. & Lazarczyk, E., 2012. "Congestion management in electricity networks: Nodal, zonal and discriminatory pricing," Cambridge Working Papers in Economics 1219, Faculty of Economics, University of Cambridge.
    19. Friedrich Kunz & Alexander Zerrahn, 2016. "Coordinating Cross-Country Congestion Management: Evidence from Central Europe," The Energy Journal, , vol. 37(3_suppl), pages 81-100, December.
    20. Egerer, Jonas & Weibezahn, Jens & Hermann, Hauke, 2016. "Two price zones for the German electricity market — Market implications and distributional effects," Energy Economics, Elsevier, vol. 59(C), pages 365-381.

    More about this item

    Keywords

    Power system economics; Unbundling; Congestion management; Transmission pricing; Inter-temporal equilibrium model;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D47 - Microeconomics - - Market Structure, Pricing, and Design - - - Market Design
    • E61 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Policy Objectives; Policy Designs and Consistency; Policy Coordination
    • L50 - Industrial Organization - - Regulation and Industrial Policy - - - General
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:regeco:v:50:y:2016:i:3:d:10.1007_s11149-016-9310-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.