IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222002043.html
   My bibliography  Save this article

Which model features matter? An experimental approach to evaluate power market modeling choices

Author

Listed:
  • Siala, Kais
  • Mier, Mathias
  • Schmidt, Lukas
  • Torralba-Díaz, Laura
  • Sheykhha, Siamak
  • Savvidis, Georgios

Abstract

A novel experimental approach of inter- and intramodel comparisons is conducted with five power market models to give recommendations for modelers working on decarbonization pathways of Europe until 2050. The experiments investigate the impact of model type (optimization vs. simulation), planning horizon (intertemporal vs. myopic), temporal resolution (8760 vs. 384 h), and spatial resolution (28 countries vs. 12 mega-regions). The model type fundamentally determines the evolution of capacity expansion. Planning horizon (assumed foresight of firms) plays a minor role for scenarios with high carbon prices. For low carbon prices in turn, results from myopic models deviate considerably from those of intertemporal models. Lower temporal and spatial resolutions foster wind power via storage and via neglected transmission boundaries, respectively. Using simulation instead of optimization frameworks, a shorter planning horizon of firms, or lower temporal and spatial resolutions might be necessary to reduce the computational complexity. This paper delivers recommendations on how to limit the discrepancies in such cases.

Suggested Citation

  • Siala, Kais & Mier, Mathias & Schmidt, Lukas & Torralba-Díaz, Laura & Sheykhha, Siamak & Savvidis, Georgios, 2022. "Which model features matter? An experimental approach to evaluate power market modeling choices," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222002043
    DOI: 10.1016/j.energy.2022.123301
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222002043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Vuuren, Detlef P. & Hoogwijk, Monique & Barker, Terry & Riahi, Keywan & Boeters, Stefan & Chateau, Jean & Scrieciu, Serban & van Vliet, Jasper & Masui, Toshihiko & Blok, Kornelis & Blomen, Eliane , 2009. "Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials," Energy Policy, Elsevier, vol. 37(12), pages 5125-5139, December.
    2. Kenneth Gillingham & William D. Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly & Paul Sztorc, 2015. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," NBER Working Papers 21637, National Bureau of Economic Research, Inc.
    3. Mier, Mathias & Weissbart, Christoph, 2020. "Power markets in transition: Decarbonization, energy efficiency, and short-term demand response," Energy Economics, Elsevier, vol. 86(C).
    4. Helgeson, Broghan & Peter, Jakob, 2020. "The role of electricity in decarbonizing European road transport – Development and assessment of an integrated multi-sectoral model," Applied Energy, Elsevier, vol. 262(C).
    5. Nahmmacher, Paul & Schmid, Eva & Hirth, Lion & Knopf, Brigitte, 2016. "Carpe diem: A novel approach to select representative days for long-term power system modeling," Energy, Elsevier, vol. 112(C), pages 430-442.
    6. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    7. Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron, 2019. "Are complex energy system models more accurate? An intra-model comparison of power system optimization models," Applied Energy, Elsevier, vol. 255(C).
    8. Hannah Förster & Katja Schumacher & Enrica De Cian & Michael Hübler & Ilkka Keppo & Silvana Mima & Ronald D. Sands, 2013. "European Energy Efficiency And Decarbonization Strategies Beyond 2030 — A Sectoral Multi-Model Decomposition," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-29.
    9. Bertsch, Joachim & Growitsch, Christian & Lorenczik, Stefan & Nagl, Stephan, 2016. "Flexibility in Europe's power sector — An additional requirement or an automatic complement?," Energy Economics, Elsevier, vol. 53(C), pages 118-131.
    10. Gils, Hans Christian & Pregger, Thomas & Flachsbarth, Franziska & Jentsch, Mareike & Dierstein, Constantin, 2019. "Comparison of spatially and temporally resolved energy system models with a focus on Germany's future power supply," Applied Energy, Elsevier, vol. 255(C).
    11. Hess, Denis & Wetzel, Manuel & Cao, Karl-Kiên, 2018. "Representing node-internal transmission and distribution grids in energy system models," Renewable Energy, Elsevier, vol. 119(C), pages 874-890.
    12. Srikkanth Ramachandran & Kais Siala & Cristina de La Rúa & Tobias Massier & Arif Ahmed & Thomas Hamacher, 2021. "Life Cycle Climate Change Impact of a Cost-Optimal HVDC Connection to Import Solar Energy from Australia to Singapore," Energies, MDPI, vol. 14(21), pages 1-23, November.
    13. Richter, Jan, 2011. "DIMENSION - A Dispatch and Investment Model for European Electricity Markets," EWI Working Papers 2011-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    14. Diaz, Gabriel & Inzunza, Andrés & Moreno, Rodrigo, 2019. "The importance of time resolution, operational flexibility and risk aversion in quantifying the value of energy storage in long-term energy planning studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 797-812.
    15. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    16. Poncelet, Kris & Delarue, Erik & Six, Daan & Duerinck, Jan & D’haeseleer, William, 2016. "Impact of the level of temporal and operational detail in energy-system planning models," Applied Energy, Elsevier, vol. 162(C), pages 631-643.
    17. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
    18. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    19. Deane, J.P. & Chiodi, Alessandro & Gargiulo, Maurizio & Ó Gallachóir, Brian P., 2012. "Soft-linking of a power systems model to an energy systems model," Energy, Elsevier, vol. 42(1), pages 303-312.
    20. Pfenninger, Stefan, 2017. "Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability," Applied Energy, Elsevier, vol. 197(C), pages 1-13.
    21. Frew, Bethany A. & Jacobson, Mark Z., 2016. "Temporal and spatial tradeoffs in power system modeling with assumptions about storage: An application of the POWER model," Energy, Elsevier, vol. 117(P1), pages 198-213.
    22. Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2014. "Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling," Energy, Elsevier, vol. 74(C), pages 109-118.
    23. Mathias Mier & Kais Siala & Kristina Govorukha & Philip Mayer, 2020. "Costs and Benefits of Political and Physical Collaboration in the European Power Market," ifo Working Paper Series 343, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prina, Matteo Giacomo & Nastasi, Benedetto & Groppi, Daniele & Misconel, Steffi & Garcia, Davide Astiaso & Sparber, Wolfram, 2022. "Comparison methods of energy system frameworks, models and scenario results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    4. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Energy, Elsevier, vol. 290(C).
    5. Thomas Heggarty & Jean-Yves Bourmaud & Robin Girard & Georges Kariniotakis, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Post-Print hal-04383397, HAL.
    6. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    7. Fattahi, A. & Sijm, J. & Faaij, A., 2020. "A systemic approach to analyze integrated energy system modeling tools: A review of national models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Vaccaro, Roberto & Rocco, Matteo V., 2021. "Quantifying the impact of low carbon transition scenarios at regional level through soft-linked energy and economy models: The case of South-Tyrol Province in Italy," Energy, Elsevier, vol. 220(C).
    9. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Raventós, Oriol & Dengiz, Thomas & Medjroubi, Wided & Unaichi, Chinonso & Bruckmeier, Andreas & Finck, Rafael, 2022. "Comparison of different methods of spatial disaggregation of electricity generation and consumption time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    11. Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2019. "Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Yeganefar, Ali & Amin-Naseri, Mohammad Reza & Sheikh-El-Eslami, Mohammad Kazem, 2020. "Improvement of representative days selection in power system planning by incorporating the extreme days of the net load to take account of the variability and intermittency of renewable resources," Applied Energy, Elsevier, vol. 272(C).
    13. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    14. Hoffmann, Maximilian & Kotzur, Leander & Stolten, Detlef, 2022. "The Pareto-optimal temporal aggregation of energy system models," Applied Energy, Elsevier, vol. 315(C).
    15. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    16. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    17. McCallum, Peter & Jenkins, David P. & Peacock, Andrew D. & Patidar, Sandhya & Andoni, Merlinda & Flynn, David & Robu, Valentin, 2019. "A multi-sectoral approach to modelling community energy demand of the built environment," Energy Policy, Elsevier, vol. 132(C), pages 865-875.
    18. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    19. van Ouwerkerk, Jonas & Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Torralba-Díaz, Laura & Bußar, Christian, 2022. "Impacts of power sector model features on optimal capacity expansion: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. Mertens, Tim & Poncelet, Kris & Duerinck, Jan & Delarue, Erik, 2020. "Representing cross-border trade of electricity in long-term energy-system optimization models with a limited geographical scope," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222002043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.