IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v251y2019ic52.html
   My bibliography  Save this article

Development of a high-storage-density hydrogen generator using solid-state NaBH4 as a hydrogen source for unmanned aerial vehicles

Author

Listed:
  • Kwon, Soon-mo
  • Kim, Myoung Jin
  • Kang, Shinuang
  • Kim, Taegyu

Abstract

A hydrogen generator using solid-state sodium borohydride (NaBH4) as a hydrogen source was proposed as part of a high-energy-density fuel-cell system for unmanned aerial vehicles. In this study, solid-state NaBH4 was used in order to overcome problems of a hydrogen generator using catalytic hydrolysis of NaBH4 aqueous solution such as low hydrogen yield and unstable hydrogen generation due to catalyst degradation. An agent solution, hydrochloric acid, was injected on to the NaBH4 to generate hydrogen. In addition, all of the balance-of-plant systems and components were integrated to develop a lightweight, commercially-viable, high-density hydrogen generator. The developed hydrogen generator was evaluated in terms of stable hydrogen generation and restartability for the entire operation time in order to validate the possibility of commercialization. From the performance evaluation, the gravimetric and volumetric specific energy densities of the hydrogen generator were found to be 739.1 W hr/kg and 272.8 W hr/L, respectively. In addition, the hydrogen storage density was 5.1 wt%, which was 1.44 times higher in comparison of a typical hydrogen generator using NaBH4 aqueous solution.

Suggested Citation

  • Kwon, Soon-mo & Kim, Myoung Jin & Kang, Shinuang & Kim, Taegyu, 2019. "Development of a high-storage-density hydrogen generator using solid-state NaBH4 as a hydrogen source for unmanned aerial vehicles," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:251:y:2019:i:c:52
    DOI: 10.1016/j.apenergy.2019.113331
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919310050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sim, Ju-hyeong & Kim, Taegyu, 2015. "Accelerated hydrolysis of solid-state NaBH4 by injecting NaHCO3 solution for hydrogen generation," Applied Energy, Elsevier, vol. 160(C), pages 999-1006.
    2. Kim, Taegyu, 2014. "NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 69(C), pages 721-727.
    3. Pan, Z.F. & An, L. & Wen, C.Y., 2019. "Recent advances in fuel cells based propulsion systems for unmanned aerial vehicles," Applied Energy, Elsevier, vol. 240(C), pages 473-485.
    4. Kim, Jincheol & Kim, Taegyu, 2015. "Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source," Applied Energy, Elsevier, vol. 160(C), pages 945-953.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Kilsu & Kim, Myoung-jin & Kwon, Soon-mo & Kang, Shinuang & Kim, Taegyu, 2023. "Performance evaluation of solid NaBH4-based hydrogen generator for fuel-cell-powered unmanned autonomous systems," Applied Energy, Elsevier, vol. 337(C).
    2. Helder X. Nunes & Diogo L. Silva & Carmen M. Rangel & Alexandra M. F. R. Pinto, 2021. "Rehydrogenation of Sodium Borates to Close the NaBH 4 -H 2 Cycle: A Review," Energies, MDPI, vol. 14(12), pages 1-28, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Kilsu & Kim, Myoung-jin & Kwon, Soon-mo & Kang, Shinuang & Kim, Taegyu, 2023. "Performance evaluation of solid NaBH4-based hydrogen generator for fuel-cell-powered unmanned autonomous systems," Applied Energy, Elsevier, vol. 337(C).
    2. Meng, Kai & Zhou, Haoran & Chen, Ben & Tu, Zhengkai, 2021. "Dynamic current cycles effect on the degradation characteristic of a H2/O2 proton exchange membrane fuel cell," Energy, Elsevier, vol. 224(C).
    3. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    4. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    5. Wang, Di & Wang, Yuqi & Wang, Feng & Zheng, Shuaishuai & Guan, Sinan & Zheng, Lan & Wu, Le & Yang, Xin & Lv, Ming & Zhang, Zaoxiao, 2022. "Optimal design of disc mini-channel metal hydride reactor with high hydrogen storage efficiency," Applied Energy, Elsevier, vol. 308(C).
    6. Belmonte, N. & Staulo, S. & Fiorot, S. & Luetto, C. & Rizzi, P. & Baricco, M., 2018. "Fuel cell powered octocopter for inspection of mobile cranes: Design, cost analysis and environmental impacts," Applied Energy, Elsevier, vol. 215(C), pages 556-565.
    7. Gupta, Sowmya & Rajhans, Chinmay & Duttagupta, Siddhartha P. & Mitra, Mira, 2021. "Hybrid energy design for lighter than air systems," Renewable Energy, Elsevier, vol. 173(C), pages 781-794.
    8. Netskina, O.V. & Komova, O.V. & Simagina, V.I. & Odegova, G.V. & Prosvirin, I.P. & Bulavchenko, O.A., 2016. "Aqueous-alkaline NaBH4 solution: The influence of storage duration of solutions on reduction and activity of cobalt catalysts," Renewable Energy, Elsevier, vol. 99(C), pages 1073-1081.
    9. Ilić, Damir & Milošević, Isidora & Ilić-Kosanović, Tatjana, 2022. "Application of Unmanned Aircraft Systems for smart city transformation: Case study Belgrade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    10. Oh, Taek Hyun & Jang, Bosun & Kwon, Sejin, 2015. "Estimating the energy density of direct borohydride–hydrogen peroxide fuel cell systems for air-independent propulsion applications," Energy, Elsevier, vol. 90(P1), pages 980-986.
    11. Nicu Bizon & Phatiphat Thounthong, 2021. "A Simple and Safe Strategy for Improving the Fuel Economy of a Fuel Cell Vehicle," Mathematics, MDPI, vol. 9(6), pages 1-29, March.
    12. Oh, Taek Hyun, 2016. "A formic acid hydrogen generator using Pd/C3N4 catalyst for mobile proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 112(C), pages 679-685.
    13. Zhixing Ji & Fafu Guo & Tingting Zhu & Kunlin Cheng & Silong Zhang & Jiang Qin & Peng Dong, 2023. "Thermodynamic Performance Comparisons of Ideal Brayton Cycles Integrated with High Temperature Fuel Cells as Power Sources on Aircraft," Sustainability, MDPI, vol. 15(3), pages 1-16, February.
    14. Santiago, Óscar & Navarro, Emilio & Raso, Miguel A. & Leo, Teresa J., 2016. "Review of implantable and external abiotically catalysed glucose fuel cells and the differences between their membranes and catalysts," Applied Energy, Elsevier, vol. 179(C), pages 497-522.
    15. Pan, Zhefei & Bi, Yanding & An, Liang, 2020. "A cost-effective and chemically stable electrode binder for alkaline-acid direct ethylene glycol fuel cells," Applied Energy, Elsevier, vol. 258(C).
    16. Gang, Byeong Gyu & Kim, Hyuntak & Kwon, Sejin, 2017. "Ground simulation of a hybrid power strategy using fuel cells and solar cells for high-endurance unmanned aerial vehicles," Energy, Elsevier, vol. 141(C), pages 1547-1554.
    17. Sim, Ju-hyeong & Kim, Taegyu, 2015. "Accelerated hydrolysis of solid-state NaBH4 by injecting NaHCO3 solution for hydrogen generation," Applied Energy, Elsevier, vol. 160(C), pages 999-1006.
    18. Oh, Taek Hyun & Jang, Bosun & Kwon, Sejin, 2014. "Performance evaluation of direct borohydride–hydrogen peroxide fuel cells with electrocatalysts supported on multiwalled carbon nanotubes," Energy, Elsevier, vol. 76(C), pages 911-919.
    19. Ho Jun Yoo & Gu Young Cho, 2023. "Influences of Flow Channel on Electrochemical Characteristics of Polymer Electrolyte Fuel Cells Humidified with NaCl Contained H 2 O," Sustainability, MDPI, vol. 15(3), pages 1-9, January.
    20. Mariana Pimenta Alves & Waseem Gul & Carlos Alberto Cimini Junior & Sung Kyu Ha, 2022. "A Review on Industrial Perspectives and Challenges on Material, Manufacturing, Design and Development of Compressed Hydrogen Storage Tanks for the Transportation Sector," Energies, MDPI, vol. 15(14), pages 1-32, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:251:y:2019:i:c:52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.