IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v250y2019icp558-567.html
   My bibliography  Save this article

Integration of reversible solid oxide cells with methane synthesis (ReSOC-MS) in grid stabilization: A dynamic investigation

Author

Listed:
  • Chen, Bin
  • Hajimolana, Yashar S.
  • Venkataraman, Vikrant
  • Ni, Meng
  • Aravind, P.V.

Abstract

The power to gas concept is promising for the next generation of electrochemical energy storage and grid stabilization technologies. The fuel produced from electricity-driven fuel production can be an efficient energy carrier for excessive grid power. Here, a reversible solid oxide cell(s) system integrated with methane synthesis (ReSOC-MS) is proposed for the grid stabilization application at Mega Watts class. CH4 can be synthesized at grid surplus conditions and can be a transportation friendly energy carrier. A control strategy is proposed for this combined system, based on the grid state and H2 tank state of the system for the normal solid oxide fuel cell (SOFC) mode and solid oxide electrolysis cell (SOEC) mode. Simulation results of these two operational modes demonstrate that the ReSOC-MS can achieve 85.34% power to gas efficiency in SOEC mode and 46.95% gas to power efficiency in SOFC mode. Dynamic simulations of stepping grid state for 5000 s operation show that the power to gas efficiency can be higher than 70%, thereby successfully demonstrating the capability of grid-balancing and methane production.

Suggested Citation

  • Chen, Bin & Hajimolana, Yashar S. & Venkataraman, Vikrant & Ni, Meng & Aravind, P.V., 2019. "Integration of reversible solid oxide cells with methane synthesis (ReSOC-MS) in grid stabilization: A dynamic investigation," Applied Energy, Elsevier, vol. 250(C), pages 558-567.
  • Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:558-567
    DOI: 10.1016/j.apenergy.2019.04.162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919308220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niaz, Saba & Manzoor, Taniya & Pandith, Altaf Hussain, 2015. "Hydrogen storage: Materials, methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 457-469.
    2. Chen, Bin & Xu, Haoran & Zhang, Houcheng & Tan, Peng & Cai, Weizi & Ni, Meng, 2017. "A novel design of solid oxide electrolyser integrated with magnesium hydride bed for hydrogen generation and storage – A dynamic simulation study," Applied Energy, Elsevier, vol. 200(C), pages 260-272.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Chao & Jing, Xiuhui & Miao, He & Xu, Jingxiang & Lin, Peijian & Li, Ping & Liang, Chaoyu & Wu, Yu & Yuan, Jinliang, 2021. "The physical properties and effects of sintering conditions on rSOFC fuel electrodes evaluated by molecular dynamics simulation," Energy, Elsevier, vol. 216(C).
    2. Jalili, Mohammad & Ghazanfari Holagh, Shahriyar & Chitsaz, Ata & Song, Jian & Markides, Christos N., 2023. "Electrolyzer cell-methanation/Sabatier reactors integration for power-to-gas energy storage: Thermo-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 329(C).
    3. Paola Costamagna & Federico Pugliese & Tullio Cavattoni & Guido Busca & Gabriella Garbarino, 2020. "Modeling of Laboratory Steam Methane Reforming and CO 2 Methanation Reactors," Energies, MDPI, vol. 13(10), pages 1-19, May.
    4. Zhang, Yumeng & Wang, Ningling & Tong, Xiaofeng & Duan, Liqiang & Lin, Tzu-En & Maréchal, François & Van herle, Jan & Wang, Ligang & Yang, Yongping, 2021. "Reversible solid-oxide cell stack based power-to-x-to-power systems: Economic potential evaluated via plant capital-cost target," Applied Energy, Elsevier, vol. 290(C).
    5. Pérez-Trujillo, Juan Pedro & Elizalde-Blancas, Francisco & McPhail, Stephen J. & Della Pietra, Massimiliano & Bosio, Barbara, 2020. "Preliminary theoretical and experimental analysis of a Molten Carbonate Fuel Cell operating in reversible mode," Applied Energy, Elsevier, vol. 263(C).
    6. Xia, Zhiping & Zhao, Dongqi & Li, Yuanzheng & Deng, Zhonghua & Kupecki, Jakub & Fu, Xiaowei & Li, Xi, 2023. "Control-oriented dynamic process optimization of solid oxide electrolysis cell system with the gas characteristic regarding oxygen electrode delamination," Applied Energy, Elsevier, vol. 332(C).
    7. Sun, Yi & Qian, Tang & Zhu, Jingdong & Zheng, Nan & Han, Yu & Xiao, Gang & Ni, Meng & Xu, Haoran, 2023. "Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Bin & Xu, Haoran & Tan, Peng & Zhang, Yuan & Xu, Xiaoming & Cai, Weizi & Chen, Meina & Ni, Meng, 2019. "Thermal modelling of ethanol-fuelled Solid Oxide Fuel Cells," Applied Energy, Elsevier, vol. 237(C), pages 476-486.
    2. Alina E. Kozhukhova & Stephanus P. du Preez & Dmitri G. Bessarabov, 2021. "Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    3. Ye, Yang & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2020. "Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank," Applied Energy, Elsevier, vol. 278(C).
    4. Zhang, Huaiwei & Bao, Liang & Qi, Jianbo & Xuan, Weidong & Fu, Li & Yuan, Yongjun, 2020. "Effects of nano-molybdenum coatings on the hydrogen storage properties of La–Mg–Ni based alloys," Renewable Energy, Elsevier, vol. 157(C), pages 1053-1060.
    5. Ye, Yang & Yue, Yi & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials," Renewable Energy, Elsevier, vol. 180(C), pages 734-743.
    6. Xiao, Gang & Sun, Anwei & Liu, Hongwei & Ni, Meng & Xu, Haoran, 2023. "Thermal management of reversible solid oxide cells in the dynamic mode switching," Applied Energy, Elsevier, vol. 331(C).
    7. Azadeh Maroufmashat & Michael Fowler, 2017. "Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways," Energies, MDPI, vol. 10(8), pages 1-22, July.
    8. Giap, Van-Tien & Lee, Young Duk & Kim, Young Sang & Ahn, Kook Young, 2020. "A novel electrical energy storage system based on a reversible solid oxide fuel cell coupled with metal hydrides and waste steam," Applied Energy, Elsevier, vol. 262(C).
    9. Ye, Yang & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "The storage performance of metal hydride hydrogen storage tanks with reaction heat recovery by phase change materials," Applied Energy, Elsevier, vol. 299(C).
    10. Sara Stelitano & Giuseppe Conte & Alfonso Policicchio & Alfredo Aloise & Giovanni Desiderio & Raffaele G. Agostino, 2020. "Pinecone-Derived Activated Carbons as an Effective Medium for Hydrogen Storage," Energies, MDPI, vol. 13(9), pages 1-16, May.
    11. Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
    12. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    13. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    14. Wang, Cong & Feng, Yu & Liu, Zekuan & Wang, Yilin & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Assessment of thermodynamic performance and CO2 emission reduction for a supersonic precooled turbine engine cycle fueled with a new green fuel of ammonia," Energy, Elsevier, vol. 261(PA).
    15. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    16. Hanley, Emma S. & Deane, JP & Gallachóir, BP Ó, 2018. "The role of hydrogen in low carbon energy futures–A review of existing perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3027-3045.
    17. Zheng, Jianpeng & Chen, Liubiao & Liu, Xuming & Zhu, Honglai & Zhou, Yuan & Wang, Junjie, 2020. "Thermodynamic optimization of composite insulation system with cold shield for liquid hydrogen zero-boil-off storage," Renewable Energy, Elsevier, vol. 147(P1), pages 824-832.
    18. Lutz, Michael & Linder, Marc & Bürger, Inga, 2020. "High capacity, low pressure hydrogen storage based on magnesium hydride and thermochemical heat storage: Experimental proof of concept," Applied Energy, Elsevier, vol. 271(C).
    19. Sreedhar, I. & Kamani, Krutarth M. & Kamani, Bansi M. & Reddy, Benjaram M. & Venugopal, A., 2018. "A Bird's Eye view on process and engineering aspects of hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 838-860.
    20. Morales-Ospino, R. & Celzard, A. & Fierro, V., 2023. "Strategies to recover and minimize boil-off losses during liquid hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:250:y:2019:i:c:p:558-567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.