IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v114y2014icp763-773.html
   My bibliography  Save this article

Agriculture, land use, energy and carbon emission impacts of global biofuel mandates to mid-century

Author

Listed:
  • Wise, Marshall
  • Dooley, James
  • Luckow, Patrick
  • Calvin, Katherine
  • Kyle, Page

Abstract

Three potential future scenarios of expanded global biofuel production are presented here utilizing the GCAM integrated assessment model. These scenarios span a range that encompasses on the low end a continuation of existing biofuel production policies to two scenarios that would require an expansion of current targets as well as an extension of biofuels targets to other regions of the world. Conventional oil use is reduced by 4–8% in the expanded biofuel scenarios, which results in a decrease of in CO2 emissions on the order of 1–2 GtCO2/year by mid-century from the global transportation sector. The regional distribution of crop production is relatively unaffected, but the biofuels targets do result in a marked increase in the production of conventional crops used for energy. Producer prices of sugar and corn reach levels about 12% and 7% above year 2005 levels, while the increased competition for land causes the price of food crops such as wheat, although not used for bioenergy in this study, to increase by 1–2%. The amount of land devoted to growing all food crops and dedicated bioenergy crops is increased by about 10% by 2050 in the High biofuel case, with concurrent decreases in other uses of land such as forest and pasture. In both of the expanded biofuels cases studied, there is an increase in net cumulative carbon emissions for the first couple of decades due to these induced land use changes. However, the difference in net cumulative emissions from the biofuels expansion decline by about 2035 as the reductions in energy system emissions exceed further increases in emissions from land use change. Even in the absence of a policy that would limit emissions from land use change, the differences in net cumulative emissions from the biofuels scenarios reach zero by 2050, and are decreasing further over time in both cases.

Suggested Citation

  • Wise, Marshall & Dooley, James & Luckow, Patrick & Calvin, Katherine & Kyle, Page, 2014. "Agriculture, land use, energy and carbon emission impacts of global biofuel mandates to mid-century," Applied Energy, Elsevier, vol. 114(C), pages 763-773.
  • Handle: RePEc:eee:appene:v:114:y:2014:i:c:p:763-773
    DOI: 10.1016/j.apenergy.2013.08.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913006867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.08.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koponen, Kati & Soimakallio, Sampo & Tsupari, Eemeli & Thun, Rabbe & Antikainen, Riina, 2013. "GHG emission performance of various liquid transportation biofuels in Finland in accordance with the EU sustainability criteria," Applied Energy, Elsevier, vol. 102(C), pages 440-448.
    2. Yang, Jun & Huang, Jikun & Qiu, Huanguang & Rozelle, Scott & Sombilla, Mercy A., 2009. "Biofuels and the Greater Mekong Subregion: Assessing the impact on prices, production and trade," Applied Energy, Elsevier, vol. 86(Supplemen), pages 37-46, November.
    3. Zhou, Adrian & Thomson, Elspeth, 2009. "The development of biofuels in Asia," Applied Energy, Elsevier, vol. 86(Supplemen), pages 11-20, November.
    4. Son H. Kim, Jae Edmonds, Josh Lurz, Steven J. Smith, and Marshall Wise, 2006. "The objECTS Framework for integrated Assessment: Hybrid Modeling of Transportation," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 63-92.
    5. Amani Elobeid & Miguel Carriquiry & Jacinto F. Fabiosa & Kranti Mulik & Dermot J. Hayes & Bruce A. Babcock & Jerome Dumortier & Francisco Rosas, 2011. "Greenhouse Gas and Nitrogen Fertilizer Scenarios for U.S. Agriculture and Global Biofuels," Food and Agricultural Policy Research Institute (FAPRI) Publications (archive only) 11-wp524, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    6. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    7. Outlaw, Joe L. & Ribera, Luis A. & Richardson, James W. & da Silva, Jorge & Bryant, Henry L. & Klose, Steven L., 2007. "Economics of Sugar-Based Ethanol Production and Related Policy Issues," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 39(2), pages 1-7, August.
    8. Perrin, Richard K. & Fretes, Nickolas F. & Sesmero, Juan Pablo, 2009. "Efficiency in Midwest US corn ethanol plants: A plant survey," Energy Policy, Elsevier, vol. 37(4), pages 1309-1316, April.
    9. Ali, Tariq & Huang, Jikun & Yang, Jun, 2013. "Impact assessment of global and national biofuels developments on agriculture in Pakistan," Applied Energy, Elsevier, vol. 104(C), pages 466-474.
    10. Sacchelli, Sandro & De Meo, Isabella & Paletto, Alessandro, 2013. "Bioenergy production and forest multifunctionality: A trade-off analysis using multiscale GIS model in a case study in Italy," Applied Energy, Elsevier, vol. 104(C), pages 10-20.
    11. Jupesta, Joni, 2012. "Modeling technological changes in the biofuel production system in Indonesia," Applied Energy, Elsevier, vol. 90(1), pages 211-217.
    12. Shapouri, Hosein & Salassi, Michael, 2006. "The Economic Feasibility of Ethanol Production from Sugar in the United States," Miscellaneous Publications 322769, United States Department of Agriculture, Economic Research Service.
    13. Matsumoto, Naoko & Sano, Daisuke & Elder, Mark, 2009. "Biofuel initiatives in Japan: Strategies, policies, and future potential," Applied Energy, Elsevier, vol. 86(Supplemen), pages 69-76, November.
    14. Faaij, Andre P.C., 2006. "Bio-energy in Europe: changing technology choices," Energy Policy, Elsevier, vol. 34(3), pages 322-342, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    2. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    3. Demirbas, M. Fatih, 2011. "Biofuels from algae for sustainable development," Applied Energy, Elsevier, vol. 88(10), pages 3473-3480.
    4. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    5. Chanthawong, Anuman & Dhakal, Shobhakar, 2016. "Stakeholders' perceptions on challenges and opportunities for biodiesel and bioethanol policy development in Thailand," Energy Policy, Elsevier, vol. 91(C), pages 189-206.
    6. Bengtsson, Selma & Fridell, Erik & Andersson, Karin, 2012. "Environmental assessment of two pathways towards the use of biofuels in shipping," Energy Policy, Elsevier, vol. 44(C), pages 451-463.
    7. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    8. Acosta, Lilibeth A. & Enano, Nelson H. & Magcale-Macandog, Damasa B. & Engay, Kathreena G. & Herrera, Maria Noriza Q. & Nicopior, Ozzy Boy S. & Sumilang, Mic Ivan V. & Eugenio, Jemimah Mae A. & Lucht,, 2013. "How sustainable is bioenergy production in the Philippines? A conjoint analysis of knowledge and opinions of people with different typologies," Applied Energy, Elsevier, vol. 102(C), pages 241-253.
    9. Melania Michetti & Matteo Zampieri, 2014. "Climate–Human–Land Interactions: A Review of Major Modelling Approaches," Land, MDPI, vol. 3(3), pages 1-41, July.
    10. Liu, Tingting & McConkey, Brian & Huffman, Ted & Smith, Stephen & MacGregor, Bob & Yemshanov, Denys & Kulshreshtha, Suren, 2014. "Potential and impacts of renewable energy production from agricultural biomass in Canada," Applied Energy, Elsevier, vol. 130(C), pages 222-229.
    11. Morris, Brittany D. & Richardson, James W. & Frosch, Brian J. & Outlaw, Joe L. & Rooney, William L., 2009. "Economic Feasibility of Ethanol Production from Sweet Sorghum Juice in Texas," 2009 Annual Meeting, January 31-February 3, 2009, Atlanta, Georgia 46852, Southern Agricultural Economics Association.
    12. Kumar, S. & Shrestha, Pujan & Abdul Salam, P., 2013. "A review of biofuel policies in the major biofuel producing countries of ASEAN: Production, targets, policy drivers and impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 822-836.
    13. Srirangan, Kajan & Akawi, Lamees & Moo-Young, Murray & Chou, C. Perry, 2012. "Towards sustainable production of clean energy carriers from biomass resources," Applied Energy, Elsevier, vol. 100(C), pages 172-186.
    14. Sadeghinezhad, E. & Kazi, S.N. & Badarudin, A. & Oon, C.S. & Zubir, M.N.M. & Mehrali, Mohammad, 2013. "A comprehensive review of bio-diesel as alternative fuel for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 410-424.
    15. Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
    16. Puri, Munish & Abraham, Reinu E. & Barrow, Colin J., 2012. "Biofuel production: Prospects, challenges and feedstock in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6022-6031.
    17. Yeboah, Osei-Agyeman & Parker, S. Janine, 2009. "Impact of Expanded United States Sugar Imports from CAFTA Countries on the Ethanol Market," 2009 Annual Meeting, January 31-February 3, 2009, Atlanta, Georgia 46027, Southern Agricultural Economics Association.
    18. Oladosu, Gbadebo, 2012. "Estimates of the global indirect energy-use emission impacts of USA biofuel policy," Applied Energy, Elsevier, vol. 99(C), pages 85-96.
    19. Hasan, M.H. & Mahlia, T.M.I. & Nur, Hadi, 2012. "A review on energy scenario and sustainable energy in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2316-2328.
    20. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:114:y:2014:i:c:p:763-773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.