IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v21y2013icp215-228.html
   My bibliography  Save this article

Wind energy potential assessment for the site of Inner Mongolia in China

Author

Listed:
  • Wu, Jie
  • Wang, Jianzhou
  • Chi, Dezhong

Abstract

An accurate quantification and characterization of the available wind resources is necessary to optimally design a wind farm. To effectively evaluate the wind energy, studying the wind's statistical characteristics is required. The probability distribution of wind speed is a very important piece of information needed in the assessment of wind energy potential since wind power is proportional to the cube of wind speed. Therefore, choosing a probability function having high goodness of fit with the observation data plays a quite significant role in wind energy assessment. In this study, three probability density functions, i.e., two-parameter Weibull, Logistic and Lognormal are employed to wind speed distribution modeling using data measured at a typical site in Inner Mongolia, China, over the latest three year period from 2009 to 2011. The performance of these three functions is compared so as to select the best one. As one of the most favorable distributions, Weibull function is a most applicable approach in describing wind speed's distribution in many cases. However, though performances of three particle swarm optimization algorithms and 18 differential evolution approaches of estimating the shape parameter estimation in the Weibull function are compared, then the one which performs best is selected to determine the optimal shape parameter to obtain the most accurate shape parameter estimation results. The performance of the Weibull function is worse than the Logistic under the measured wind speed data and the chosen error evaluation criteria. Besides, as compared to the Lognormal function, the Logistic function provides a more adequate result in wind speed distribution modeling. Therefore, in this work, the Logistic function is applied to the consequent wind energy assessment through the availability factor, capacity factor, and turbine efficiency of a wind turbine. Assessment results have shown that it is suitable to build a wind farm in this area.

Suggested Citation

  • Wu, Jie & Wang, Jianzhou & Chi, Dezhong, 2013. "Wind energy potential assessment for the site of Inner Mongolia in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 215-228.
  • Handle: RePEc:eee:rensus:v:21:y:2013:i:c:p:215-228
    DOI: 10.1016/j.rser.2012.12.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113000166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.12.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pepper, Darrell W. & Wang, Xiuling, 2007. "Application of an h-adaptive finite element model for wind energy assessment in Nevada," Renewable Energy, Elsevier, vol. 32(10), pages 1705-1722.
    2. Ben Amar, F. & Elamouri, M. & Dhifaoui, R., 2008. "Energy assessment of the first wind farm section of Sidi Daoud, Tunisia," Renewable Energy, Elsevier, vol. 33(10), pages 2311-2321.
    3. Ullah, Irfan & Chaudhry, Qamar-uz-Zaman & Chipperfield, Andrew J., 2010. "An evaluation of wind energy potential at Kati Bandar, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 856-861, February.
    4. Thiaw, L. & Sow, G. & Fall, S.S. & Kasse, M. & Sylla, E. & Thioye, S., 2010. "A neural network based approach for wind resource and wind generators production assessment," Applied Energy, Elsevier, vol. 87(5), pages 1744-1748, May.
    5. Lo Brano, Valerio & Orioli, Aldo & Ciulla, Giuseppina & Culotta, Simona, 2011. "Quality of wind speed fitting distributions for the urban area of Palermo, Italy," Renewable Energy, Elsevier, vol. 36(3), pages 1026-1039.
    6. Đurišić, Željko & Mikulović, Jovan, 2012. "Assessment of the wind energy resource in the South Banat region, Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3014-3023.
    7. Mirhosseini, M. & Sharifi, F. & Sedaghat, A., 2011. "Assessing the wind energy potential locations in province of Semnan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 449-459, January.
    8. Keyhani, A. & Ghasemi-Varnamkhasti, M. & Khanali, M. & Abbaszadeh, R., 2010. "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, Elsevier, vol. 35(1), pages 188-201.
    9. Jaramillo, O.A. & Borja, M.A., 2004. "Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case," Renewable Energy, Elsevier, vol. 29(10), pages 1613-1630.
    10. Chang, Tsang-Jung & Wu, Yu-Ting & Hsu, Hua-Yi & Chu, Chia-Ren & Liao, Chun-Min, 2003. "Assessment of wind characteristics and wind turbine characteristics in Taiwan," Renewable Energy, Elsevier, vol. 28(6), pages 851-871.
    11. Chang, Tian Pau, 2011. "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application," Applied Energy, Elsevier, vol. 88(1), pages 272-282, January.
    12. Durak, Murat & Şen, Zekai, 2002. "Wind power potential in Turkey and Akhisar case study," Renewable Energy, Elsevier, vol. 25(3), pages 463-472.
    13. Oh, Ki-Yong & Kim, Ji-Young & Lee, Jae-Kyung & Ryu, Moo-Sung & Lee, Jun-Shin, 2012. "An assessment of wind energy potential at the demonstration offshore wind farm in Korea," Energy, Elsevier, vol. 46(1), pages 555-563.
    14. Eskin, N. & Artar, H. & Tolun, S., 2008. "Wind energy potential of Gökçeada Island in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 839-851, April.
    15. Ling, Yu & Cai, Xu, 2012. "Exploitation and utilization of the wind power and its perspective in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2111-2117.
    16. Acker, Thomas L. & Williams, Susan K. & Duque, Earl P.N. & Brummels, Grant & Buechler, Jason, 2007. "Wind resource assessment in the state of Arizona: Inventory, capacity factor, and cost," Renewable Energy, Elsevier, vol. 32(9), pages 1453-1466.
    17. Mathew, Sathyajith & Pandey, K.P. & Kumar.V, Anil, 2002. "Analysis of wind regimes for energy estimation," Renewable Energy, Elsevier, vol. 25(3), pages 381-399.
    18. Liu, Feng-Jiao & Chen, Pai-Hsun & Kuo, Shyi-Shiun & Su, De-Chuan & Chang, Tian-Pau & Yu, Yu-Hua & Lin, Tsung-Chi, 2011. "Wind characterization analysis incorporating genetic algorithm: A case study in Taiwan Strait," Energy, Elsevier, vol. 36(5), pages 2611-2619.
    19. Onat, Nevzat & Ersoz, Sedat, 2011. "Analysis of wind climate and wind energy potential of regions in Turkey," Energy, Elsevier, vol. 36(1), pages 148-156.
    20. Ahmed, Ahmed Shata, 2010. "Wind energy as a potential generation source at Ras Benas, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2167-2173, October.
    21. Weisser, D, 2003. "A wind energy analysis of Grenada: an estimation using the ‘Weibull’ density function," Renewable Energy, Elsevier, vol. 28(11), pages 1803-1812.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    2. Khahro, Shahnawaz Farhan & Tabbassum, Kavita & Mahmood Soomro, Amir & Liao, Xiaozhong & Alvi, Muhammad Bux & Dong, Lei & Manzoor, M. Farhan, 2014. "Techno-economical evaluation of wind energy potential and analysis of power generation from wind at Gharo, Sindh Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 460-474.
    3. Wang, Jianzhou & Qin, Shanshan & Jin, Shiqiang & Wu, Jie, 2015. "Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 26-42.
    4. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    5. Sergei Kolesnik & Yossi Rabinovitz & Michael Byalsky & Asher Yahalom & Alon Kuperman, 2023. "Assessment of Wind Speed Statistics in Samaria Region and Potential Energy Production," Energies, MDPI, vol. 16(9), pages 1-35, May.
    6. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    7. Belabes, B. & Youcefi, A. & Guerri, O. & Djamai, M. & Kaabeche, A., 2015. "Evaluation of wind energy potential and estimation of cost using wind energy turbines for electricity generation in north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1245-1255.
    8. Kwami Senam A. Sedzro & Adekunlé Akim Salami & Pierre Akuété Agbessi & Mawugno Koffi Kodjo, 2022. "Comparative Study of Wind Energy Potential Estimation Methods for Wind Sites in Togo and Benin (West Sub-Saharan Africa)," Energies, MDPI, vol. 15(22), pages 1-28, November.
    9. Mostafaeipour, A. & Sedaghat, A. & Dehghan-Niri, A.A. & Kalantar, V., 2011. "Wind energy feasibility study for city of Shahrbabak in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2545-2556, August.
    10. Bahrami, Arian & Teimourian, Amir & Okoye, Chiemeka Onyeka & Khosravi, Nima, 2019. "Assessing the feasibility of wind energy as a power source in Turkmenistan; a major opportunity for Central Asia's energy market," Energy, Elsevier, vol. 183(C), pages 415-427.
    11. Yaniktepe, B. & Koroglu, T. & Savrun, M.M., 2013. "Investigation of wind characteristics and wind energy potential in Osmaniye, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 703-711.
    12. Fazelpour, Farivar & Soltani, Nima & Soltani, Sina & Rosen, Marc A., 2015. "Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 87-99.
    13. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    14. Liu, Feng-Jiao & Chen, Pai-Hsun & Kuo, Shyi-Shiun & Su, De-Chuan & Chang, Tian-Pau & Yu, Yu-Hua & Lin, Tsung-Chi, 2011. "Wind characterization analysis incorporating genetic algorithm: A case study in Taiwan Strait," Energy, Elsevier, vol. 36(5), pages 2611-2619.
    15. Arslan, Talha & Bulut, Y. Murat & Altın Yavuz, Arzu, 2014. "Comparative study of numerical methods for determining Weibull parameters for wind energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 820-825.
    16. Celik, Ali N. & Kolhe, Mohan, 2013. "Generalized feed-forward based method for wind energy prediction," Applied Energy, Elsevier, vol. 101(C), pages 582-588.
    17. Alkhalidi, Mohamad A. & Al-Dabbous, Shoug Kh. & Neelamani, S. & Aldashti, Hassan A., 2019. "Wind energy potential at coastal and offshore locations in the state of Kuwait," Renewable Energy, Elsevier, vol. 135(C), pages 529-539.
    18. Sumair, Muhammad & Aized, Tauseef & Aslam Bhutta, Muhammad Mahmood & Siddiqui, Farrukh Arsalan & Tehreem, Layba & Chaudhry, Abduallah, 2022. "Method of Four Moments Mixture-A new approach for parametric estimation of Weibull Probability Distribution for wind potential estimation applications," Renewable Energy, Elsevier, vol. 191(C), pages 291-304.
    19. Ouammi, Ahmed & Sacile, Roberto & Zejli, Driss & Mimet, Abdelaziz & Benchrifa, Rachid, 2010. "Sustainability of a wind power plant: Application to different Moroccan sites," Energy, Elsevier, vol. 35(10), pages 4226-4236.
    20. Soulouknga, M.H. & Doka, S.Y. & N.Revanna, & N.Djongyang, & T.C.Kofane,, 2018. "Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution," Renewable Energy, Elsevier, vol. 121(C), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:21:y:2013:i:c:p:215-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.