Nationwide HVAC energy-saving potential quantification for office buildings with occupant-centric controls in various climates
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2020.115727
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Oldewurtel, Frauke & Sturzenegger, David & Morari, Manfred, 2013. "Importance of occupancy information for building climate control," Applied Energy, Elsevier, vol. 101(C), pages 521-532.
- Peng, Yuzhen & Rysanek, Adam & Nagy, Zoltán & Schlüter, Arno, 2018. "Using machine learning techniques for occupancy-prediction-based cooling control in office buildings," Applied Energy, Elsevier, vol. 211(C), pages 1343-1358.
- Naylor, Sophie & Gillott, Mark & Lau, Tom, 2018. "A review of occupant-centric building control strategies to reduce building energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 1-10.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dehwah, Ammar H.A. & Krarti, Moncef, 2022. "Optimal controls of precooling strategies using switchable insulation systems for commercial buildings," Applied Energy, Elsevier, vol. 320(C).
- Kong, Meng & Dong, Bing & Zhang, Rongpeng & O'Neill, Zheng, 2022. "HVAC energy savings, thermal comfort and air quality for occupant-centric control through a side-by-side experimental study," Applied Energy, Elsevier, vol. 306(PA).
- Alperen Yayla & Kübra Sultan Świerczewska & Mahmut Kaya & Bahadır Karaca & Yusuf Arayici & Yunus Emre Ayözen & Onur Behzat Tokdemir, 2022. "Artificial Intelligence (AI)-Based Occupant-Centric Heating Ventilation and Air Conditioning (HVAC) Control System for Multi-Zone Commercial Buildings," Sustainability, MDPI, vol. 14(23), pages 1-29, December.
- Yoon, Y. & Jung, S. & Im, P. & Salonvaara, M. & Bhandari, M. & Kunwar, N., 2023. "Empirical validation of building energy simulation model input parameter for multizone commercial building during the cooling season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Guanjing Lin & Armando Casillas & Maggie Sheng & Jessica Granderson, 2023. "Performance Evaluation of an Occupancy-Based HVAC Control System in an Office Building," Energies, MDPI, vol. 16(20), pages 1-21, October.
- Nilofar Asim & Marzieh Badiei & Masita Mohammad & Halim Razali & Armin Rajabi & Lim Chin Haw & Mariyam Jameelah Ghazali, 2022. "Sustainability of Heating, Ventilation and Air-Conditioning (HVAC) Systems in Buildings—An Overview," IJERPH, MDPI, vol. 19(2), pages 1-16, January.
- Wang, Junqi & Jiang, Lanfei & Yu, Hanhui & Feng, Zhuangbo & Castaño-Rosa, Raúl & Cao, Shi-jie, 2024. "Computer vision to advance the sensing and control of built environment towards occupant-centric sustainable development: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Ye, Yunyang & Chen, Yan & Zhang, Jian & Pang, Zhihong & O’Neill, Zheng & Dong, Bing & Cheng, Hwakong, 2021. "Energy-saving potential evaluation for primary schools with occupant-centric controls," Applied Energy, Elsevier, vol. 293(C).
- Pang, Zhihong & O'Neill, Zheng & Chen, Yan & Zhang, Jian & Cheng, Hwakong & Dong, Bing, 2023. "Adopting occupancy-based HVAC controls in commercial building energy codes: Analysis of cost-effectiveness and decarbonization potential," Applied Energy, Elsevier, vol. 349(C).
- Yamaguchi, Yohei & Kim, Bumjoon & Kitamura, Takuya & Akizawa, Kotone & Chen, Hemiao & Shimoda, Yoshiyuki, 2022. "Building stock energy modeling considering building system composition and long-term change for climate change mitigation of commercial building stocks," Applied Energy, Elsevier, vol. 306(PA).
- Raman, Naren Srivaths & Chen, Bo & Barooah, Prabir, 2022. "On energy-efficient HVAC operation with Model Predictive Control: A multiple climate zone study," Applied Energy, Elsevier, vol. 324(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mahmud, Arafat & Dhrubo, Ehsan Ahmed & Ahmed, S. Shahnawaz & Chowdhury, Abdul Hasib & Hossain, Md. Farhad & Rahman, Hamidur & Masood, Nahid-Al, 2022. "Energy conservation for existing cooling and lighting loads," Energy, Elsevier, vol. 255(C).
- Jin Dong & Christopher Winstead & James Nutaro & Teja Kuruganti, 2018. "Occupancy-Based HVAC Control with Short-Term Occupancy Prediction Algorithms for Energy-Efficient Buildings," Energies, MDPI, vol. 11(9), pages 1-20, September.
- Yan, Biao & Yang, Wansheng & He, Fuquan & Zeng, Wenhao, 2023. "Occupant behavior impact in buildings and the artificial intelligence-based techniques and data-driven approach solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Alperen Yayla & Kübra Sultan Świerczewska & Mahmut Kaya & Bahadır Karaca & Yusuf Arayici & Yunus Emre Ayözen & Onur Behzat Tokdemir, 2022. "Artificial Intelligence (AI)-Based Occupant-Centric Heating Ventilation and Air Conditioning (HVAC) Control System for Multi-Zone Commercial Buildings," Sustainability, MDPI, vol. 14(23), pages 1-29, December.
- Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
- Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
- Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
- Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
- Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
- Nweye, Kingsley & Nagy, Zoltan, 2022. "MARTINI: Smart meter driven estimation of HVAC schedules and energy savings based on Wi-Fi sensing and clustering," Applied Energy, Elsevier, vol. 316(C).
- Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
- Imran & Naeem Iqbal & Shabir Ahmad & Do Hyeun Kim, 2021. "Towards Mountain Fire Safety Using Fire Spread Predictive Analytics and Mountain Fire Containment in IoT Environment," Sustainability, MDPI, vol. 13(5), pages 1-23, February.
- Amin, Amin & Mourshed, Monjur, 2024. "Community stochastic domestic electricity forecasting," Applied Energy, Elsevier, vol. 355(C).
- Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
- Jing Zhao & Yu Shan, 2020. "A Fuzzy Control Strategy Using the Load Forecast for Air Conditioning System," Energies, MDPI, vol. 13(3), pages 1-17, January.
- Charalampos Rafail Lazaridis & Iakovos Michailidis & Georgios Karatzinis & Panagiotis Michailidis & Elias Kosmatopoulos, 2024. "Evaluating Reinforcement Learning Algorithms in Residential Energy Saving and Comfort Management," Energies, MDPI, vol. 17(3), pages 1-33, January.
- Lee, Junghun & Yoo, Seunghwan & Kim, Jonghun & Song, Doosam & Jeong, Hakgeun, 2018. "Improvements to the customer baseline load (CBL) using standard energy consumption considering energy efficiency and demand response," Energy, Elsevier, vol. 144(C), pages 1052-1063.
- Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
- Žáčeková, Eva & Váňa, Zdeněk & Cigler, Jiří, 2014. "Towards the real-life implementation of MPC for an office building: Identification issues," Applied Energy, Elsevier, vol. 135(C), pages 53-62.
More about this item
Keywords
Occupant-centric controls; Large-scale simulation; EnergyPlus; Demand-controlled ventilation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312186. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.