IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v323y2022ics0306261922008881.html
   My bibliography  Save this article

Impact of occupant related data on identification and model predictive control for buildings

Author

Listed:
  • Zhan, Sicheng
  • Lei, Yue
  • Jin, Yuan
  • Yan, Da
  • Chong, Adrian

Abstract

Model predictive control (MPC) has shown potential in improving building performance but is bottlenecked by the difficulty in constructing control-oriented models. The challenge lies in evaluating the sufficiency of the model and the data usage beforehand. This paper bridges the knowledge gaps in the interactions between data requirements, model quality, and control performance by integrating real-world measurements and simulation-based experiments. The data usage related to occupancy and Internal heat gain (IHG) was studied considering its importance and the absence of consensus in the literature. Varying occupant-related data sources were tested as RC model inputs, including none, schedule, electricity consumption, CO2 ppm, and ideal measurement. Combinations of model inputs and complexities were examined for prediction and control in an office, a classroom, and multi-zone offices on one floor. The results indicated that the usefulness of data is jointly affected by three factors: measurement suitability, model complexity, and modeling purpose. Given the adequate model structure, satisfying prediction and control performance was achieved in offices with no detailed measurement. Meanwhile, electricity and CO2 were needed together to capture the IHG influence and realize the good performance for classrooms. The experiments also uncovered the heterogeneous requirements on models from traditional prediction tests and the control tasks. Lower prediction error did not always mean better control. More importantly, we provided the first quantitative demonstration of the complementary relationship between model adequacy and data informativeness with respect to different purposes. This study advocates the pioneering idea of sparse data usage and parsimonious modeling, which promotes the actual application of MPC in buildings by guiding control-oriented model development.

Suggested Citation

  • Zhan, Sicheng & Lei, Yue & Jin, Yuan & Yan, Da & Chong, Adrian, 2022. "Impact of occupant related data on identification and model predictive control for buildings," Applied Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922008881
    DOI: 10.1016/j.apenergy.2022.119580
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922008881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    2. Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
    3. Oldewurtel, Frauke & Sturzenegger, David & Morari, Manfred, 2013. "Importance of occupancy information for building climate control," Applied Energy, Elsevier, vol. 101(C), pages 521-532.
    4. Žáčeková, Eva & Váňa, Zdeněk & Cigler, Jiří, 2014. "Towards the real-life implementation of MPC for an office building: Identification issues," Applied Energy, Elsevier, vol. 135(C), pages 53-62.
    5. Chong, Adrian & Augenbroe, Godfried & Yan, Da, 2021. "Occupancy data at different spatial resolutions: Building energy performance and model calibration," Applied Energy, Elsevier, vol. 286(C).
    6. Blum, D.H. & Arendt, K. & Rivalin, L. & Piette, M.A. & Wetter, M. & Veje, C.T., 2019. "Practical factors of envelope model setup and their effects on the performance of model predictive control for building heating, ventilating, and air conditioning systems," Applied Energy, Elsevier, vol. 236(C), pages 410-425.
    7. Li, Xiwang & Wen, Jin & Bai, Er-Wei, 2016. "Developing a whole building cooling energy forecasting model for on-line operation optimization using proactive system identification," Applied Energy, Elsevier, vol. 164(C), pages 69-88.
    8. Li, Yanfei & O'Neill, Zheng & Zhang, Liang & Chen, Jianli & Im, Piljae & DeGraw, Jason, 2021. "Grey-box modeling and application for building energy simulations - A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Yue & Zhan, Sicheng & Ono, Eikichi & Peng, Yuzhen & Zhang, Zhiang & Hasama, Takamasa & Chong, Adrian, 2022. "A practical deep reinforcement learning framework for multivariate occupant-centric control in buildings," Applied Energy, Elsevier, vol. 324(C).
    2. Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    2. Bünning, Felix & Huber, Benjamin & Schalbetter, Adrian & Aboudonia, Ahmed & Hudoba de Badyn, Mathias & Heer, Philipp & Smith, Roy S. & Lygeros, John, 2022. "Physics-informed linear regression is competitive with two Machine Learning methods in residential building MPC," Applied Energy, Elsevier, vol. 310(C).
    3. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    4. Cui, Xueyuan & Liu, Shu & Ruan, Guangchun & Wang, Yi, 2024. "Data-driven aggregation of thermal dynamics within building virtual power plants," Applied Energy, Elsevier, vol. 353(PB).
    5. Smarra, Francesco & Jain, Achin & de Rubeis, Tullio & Ambrosini, Dario & D’Innocenzo, Alessandro & Mangharam, Rahul, 2018. "Data-driven model predictive control using random forests for building energy optimization and climate control," Applied Energy, Elsevier, vol. 226(C), pages 1252-1272.
    6. Gruber, Mattias & Trüschel, Anders & Dalenbäck, Jan-Olof, 2015. "Energy efficient climate control in office buildings without giving up implementability," Applied Energy, Elsevier, vol. 154(C), pages 934-943.
    7. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2023. "A Bayesian deep-learning framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 348(C).
    8. Savadkoohi, Marjan & Macarulla, Marcel & Casals, Miquel, 2023. "Facilitating the implementation of neural network-based predictive control to optimize building heating operation," Energy, Elsevier, vol. 263(PB).
    9. Joe, Jaewan & Im, Piljae & Cui, Borui & Dong, Jin, 2023. "Model-based predictive control of multi-zone commercial building with a lumped building modelling approach," Energy, Elsevier, vol. 263(PA).
    10. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    11. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    12. Zhang, Chengyu & Ma, Liangdong & Luo, Zhiwen & Han, Xing & Zhao, Tianyi, 2024. "Forecasting building plug load electricity consumption employing occupant-building interaction input features and bidirectional LSTM with improved swarm intelligent algorithms," Energy, Elsevier, vol. 288(C).
    13. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    15. Fu, Chun & Miller, Clayton, 2022. "Using Google Trends as a proxy for occupant behavior to predict building energy consumption," Applied Energy, Elsevier, vol. 310(C).
    16. Lork, Clement & Li, Wen-Tai & Qin, Yan & Zhou, Yuren & Yuen, Chau & Tushar, Wayes & Saha, Tapan K., 2020. "An uncertainty-aware deep reinforcement learning framework for residential air conditioning energy management," Applied Energy, Elsevier, vol. 276(C).
    17. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    18. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    19. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    20. Nweye, Kingsley & Nagy, Zoltan, 2022. "MARTINI: Smart meter driven estimation of HVAC schedules and energy savings based on Wi-Fi sensing and clustering," Applied Energy, Elsevier, vol. 316(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922008881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.