IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4593-d408719.html
   My bibliography  Save this article

Frequency Analysis of Solar PV Power to Enable Optimal Building Load Control

Author

Listed:
  • Mohammed Olama

    (Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA)

  • Jin Dong

    (Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA)

  • Isha Sharma

    (Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA)

  • Yaosuo Xue

    (Electrical and Electronics Systems Research Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA)

  • Teja Kuruganti

    (Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA)

Abstract

In this paper, we present a flexibility estimation mechanism for buildings’ thermostatically controlled loads (TCLs) to enable the distribution level consumption of the majority of solar photovoltaic (PV) generation by local building TCLs. The local consumption of PV generation provides several advantages to the grid operation as well as the consumers, such as reducing the stress on the distribution network, minimizing voltage fluctuations and two-way power flows in the distribution network, and reducing the required battery storage capacity for PV integration. This would result in increasing the solar PV generation penetration levels. The aims of this study are twofold. First, spectral (frequency) analyses of solar PV power generation together with the power consumption of multiple building TCLs (such as heating, ventilation, and air conditioning (HVAC) systems, water heaters, and refrigerators) are performed. These analyses define the bandwidth over which these TCLs can operate and also describe the PV generation frequency bandwidth. Such spectral analyses, in frequency domain, can help identify the flexible components of PV generation that can be consumed by the various TCLs through optimal building load utilization. Second, a quadratic optimization problem based on model predictive control is formulated to allow consuming most of the low and medium frequency content of the PV power locally by building TCLs, while maintaining occupants’ comfort and TCLs’ physical constraints. The solution to the proposed optimization problem is achieved using optimal control strategies. Numerical results show that most of the low and medium frequency content of the PV generation can be consumed locally by building TCLs. The remaining high-frequency content of the PV generation can then be stored/offset using energy storage systems.

Suggested Citation

  • Mohammed Olama & Jin Dong & Isha Sharma & Yaosuo Xue & Teja Kuruganti, 2020. "Frequency Analysis of Solar PV Power to Enable Optimal Building Load Control," Energies, MDPI, vol. 13(18), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4593-:d:408719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4593/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4593/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Drgoňa, Ján & Picard, Damien & Kvasnica, Michal & Helsen, Lieve, 2018. "Approximate model predictive building control via machine learning," Applied Energy, Elsevier, vol. 218(C), pages 199-216.
    2. Mohammed M. Olama & Teja Kuruganti & James Nutaro & Jin Dong, 2018. "Coordination and Control of Building HVAC Systems to Provide Frequency Regulation to the Electric Grid," Energies, MDPI, vol. 11(7), pages 1-15, July.
    3. Cui, Borui & Fan, Cheng & Munk, Jeffrey & Mao, Ning & Xiao, Fu & Dong, Jin & Kuruganti, Teja, 2019. "A hybrid building thermal modeling approach for predicting temperatures in typical, detached, two-story houses," Applied Energy, Elsevier, vol. 236(C), pages 101-116.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
    2. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    3. Jefferson Brooks & Ana Rivera & Miguel Chen Austin & Nathalia Tejedor-Flores, 2022. "A Machine Learning-Based Approach to Estimate Energy Flows of the Mangrove Forest: The Case of Panama Bay," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    4. César Benavente-Peces & Nisrine Ibadah, 2020. "Buildings Energy Efficiency Analysis and Classification Using Various Machine Learning Technique Classifiers," Energies, MDPI, vol. 13(13), pages 1-24, July.
    5. Liu, Xiangfei & Ren, Mifeng & Yang, Zhile & Yan, Gaowei & Guo, Yuanjun & Cheng, Lan & Wu, Chengke, 2022. "A multi-step predictive deep reinforcement learning algorithm for HVAC control systems in smart buildings," Energy, Elsevier, vol. 259(C).
    6. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    7. Arroyo, Javier & Manna, Carlo & Spiessens, Fred & Helsen, Lieve, 2022. "Reinforced model predictive control (RL-MPC) for building energy management," Applied Energy, Elsevier, vol. 309(C).
    8. Zhe Tian & Chuang Ye & Jie Zhu & Jide Niu & Yakai Lu, 2023. "Accelerating Optimal Control Strategy Generation for HVAC Systems Using a Scenario Reduction Method: A Case Study," Energies, MDPI, vol. 16(7), pages 1-20, March.
    9. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    10. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2021. "Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control," Applied Energy, Elsevier, vol. 288(C).
    11. Giaouris, Damian & Papadopoulos, Athanasios I. & Patsios, Charalampos & Walker, Sara & Ziogou, Chrysovalantou & Taylor, Phil & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2018. "A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response," Applied Energy, Elsevier, vol. 226(C), pages 546-559.
    12. Huang, Sen & Ye, Yunyang & Wu, Di & Zuo, Wangda, 2021. "An assessment of power flexibility from commercial building cooling systems in the United States," Energy, Elsevier, vol. 221(C).
    13. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Li, Yanfei & O'Neill, Zheng & Zhang, Liang & Chen, Jianli & Im, Piljae & DeGraw, Jason, 2021. "Grey-box modeling and application for building energy simulations - A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    15. Wei, Ziqing & Ren, Fukang & Zhu, Yikang & Yue, Bao & Ding, Yunxiao & Zheng, Chunyuan & Li, Bin & Zhai, Xiaoqiang, 2022. "Data-driven two-step identification of building thermal characteristics: A case study of office building," Applied Energy, Elsevier, vol. 326(C).
    16. Lee, Zachary E. & Zhang, K. Max, 2021. "Generalized reinforcement learning for building control using Behavioral Cloning," Applied Energy, Elsevier, vol. 304(C).
    17. Davide Deltetto & Davide Coraci & Giuseppe Pinto & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Exploring the Potentialities of Deep Reinforcement Learning for Incentive-Based Demand Response in a Cluster of Small Commercial Buildings," Energies, MDPI, vol. 14(10), pages 1-25, May.
    18. Dewangan, Chaman Lal & Vijayan, Vineeth & Shukla, Devesh & Chakrabarti, S. & Singh, S.N. & Sharma, Ankush & Hossain, Md. Alamgir, 2023. "An improved decentralized scheme for incentive-based demand response from residential customers," Energy, Elsevier, vol. 284(C).
    19. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    20. Tabares-Velasco, Paulo Cesar & Speake, Andrew & Harris, Maxwell & Newman, Alexandra & Vincent, Tyrone & Lanahan, Michael, 2019. "A modeling framework for optimization-based control of a residential building thermostat for time-of-use pricing," Applied Energy, Elsevier, vol. 242(C), pages 1346-1357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4593-:d:408719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.